Выбрать главу

Упражнение 1.18. (дополнительное). Докажите, что схема в среднем за полный период не потребляет мощности, если протекающий через нее ток сдвинут по фазе относительно питающего напряжения на 90 °.

Как определить среднюю потребляемую мощность для произвольной схемы?

В общем случае можно просуммировать произведения U·I и разделить сумму на длительность истекшего интервала времени. Иными словами

где Т — полный период времени.

Практически так мощность почти никогда не определяют. Нетрудно доказать, что средняя мощность определяется следующим выражением:

P = Re(U*I) = Re(UI*),

где U и I — эффективные комплексные значения напряжения и тока.

Рассмотрим пример. Допустим, что в предыдущей схеме конденсатор питается синусоидальным напряжением, эффективное значение которого равно 1 В. Для простоты будем выполнять все преобразования с эффективными значениями.

Итак: U = 1, I = U/(j/ωC), Ρ = Re[UI*] = Re(jωC) = 0. Мы получили, что средняя мощность, как и утверждалось, равна нулю.

А теперь рассмотрим схему, показанную на рис. 1.50.

Рис. 1.50.

Выполним ряд преобразований:

Z = R — j/ωC,

U = U0,

I = U/Z = U0/[R — j/ωC] = U0/[R + (j/ωC)]/[R2 + (1/ω2C2)],

Ρ = Re(UI*) = U02·R/[R2 + (1/ω2C2)].

В третьей строке преобразований при определении тока I мы умножили числитель и знаменатель на комплексное число, сопряженное знаменателю, для того чтобы получить в знаменателе действительное число. Полученная величина меньше, чем произведение амплитуд U и I; ее отношение к этому произведению называют коэффициентом мощности:

Коэффициент мощности — это косинус угла, определяющего сдвиг фаз напряжения и тока, он лежит в диапазоне от 0 (для реактивной схемы) до 1 (для резистивной схемы). Если коэффициент мощности меньше 1, то это значит, что в схеме присутствует реактивный элемент.

Упражнение 1.19. Докажите, что вся средняя мощность предыдущей схемы рассеивается на резисторе. Для того, чтобы решить эту задачу, нужно определить величину отношения UR2/R. Определите, чему будет равна эта мощность в ваттах, если цепь, состоящая из последовательно соединенных конденсатора емкостью 1 мкФ и резистора сопротивлением 1 кОм, подключена к силовой сети с эффективным напряжением 110 В (частота 60 Гц).

Коэффициент мощности играет немаловажную роль в распределении больших мощностей, так как реактивные токи не передают нагрузке никакой полезной мощности, зато вызывают нагрев в сопротивлениях проводов генераторов и трансформаторов (температура нагрева пропорциональна I2R). Бытовые потребители электроэнергии платят только за «действительную» потребляемую мощность [Re(UI*)], а промышленные потребители - с учетом коэффициента мощности. Вот почему большие предприятия для погашения влияния индуктивных реактивных сопротивлений производственного оборудования (моторов) сооружают специальные конденсаторные блоки.

Упражнение 1.20. Покажите, что последовательное подключение конденсатора емкостью С = 1/ω2L к последовательной RL-цепи делает коэффициент мощности этой цепи равным единице. Затем рассмотрите параллельную цепь и параллельно подключенный конденсатор.

Делители напряжения: обобщение. Простейший делитель напряжения (рис. 1.5) состоит из пары последовательно соединенных резисторов. Входное напряжение измеряется в верхней точке относительно земли, а выходное-в точке соединения резисторов относительно земли. От простейшего резистивного делителя перейдем к более общей схеме делителя, если один или оба резистора заменим на конденсатор или индуктивность, как, на рис. 1.51 (в более сложной схеме присутствуют и R, и L, и С).

Рис. 1.51. Обобщенная схема делителя напряжения: пара электрических цепей с произвольным импедансом.

Вообще говоря, в таком делителе отношение Uвых/Uвх не является постоянной величиной, а зависит от частоты. Анализ схемы выполняется без всяких хитроумных приемов:

IUвх/Zполн,

Zполн = Z1+ Z2,

UвыхZ2Uвх[Z2/(Z1+ Z2)].

Не будем сосредоточивать внимание на полученном результате, рассмотрим лучше некоторые простые, но очень важные примеры.

1.19. RС-фильтры

Благодаря тому что импеданс конденсатора, равный ZС = —j/ωС, зависит от частоты, с помощью конденсаторов и резисторов можно строить частотно-зависимые делители напряжения, которые будут пропускать только сигналы нужной частоты, а все остальные подавлять. В этом разделе вы познакомитесь с примерами простейших RС-фильтров, к которым мы будем неоднократно обращаться в дальнейшем. В гл. 5 и приложении 3 описаны более сложные фильтры.

Фильтры высоких частот. На рис. 1.52 показан делитель напряжения, состоящий из конденсатора и резистора.

Рис. 1.52. Фильтр высоких частот.

Согласно закону Ома для комплексных величин,

(Окончательный результат получен после умножения числителя и знаменателя на комплексное число, сопряженное знаменателю.) Итак, напряжение на резисторе R равно

Чаще всего нас интересует не фаза, а амплитуда Uвых:

Uвых = (UвыхU*вых)1/2 = UвхR/[R2 + (1/ω2С2)]1/2

Uвых UвхR1/(R1 + R2).

Векторное представление импеданса RС-цепи (рис. 1.53) показано на рис. 1.54.

Рис. 1.53.

Рис. 1.54.

Итак, если не принимать во внимание сдвиг фаз, а рассматривать только модули комплексных амплитуд, то «отклик» схемы будет определяться следующим образом:

Uвых UвхR[R2 + (1/ω2С2)]1/2 =

= Uвхf·RC/[1+(2πf·RC)2]1/2.

График этой зависимости представлен на рис. 1.55.

Рис. 1.55. Частотная характеристика фильтра высоких частот.

Такой же результат мы бы получили, если бы определили отношение модулей импедансов как в упражнении 1.17 и в примере перед этим упражнением; числитель представляет собой модуль импеданса нижнего плеча делителя R, а знаменатель-модуль импеданса последовательного соединения R и С.