Выбрать главу

Рис.11.22. Диаграммы Хаббла, наблюдаемые во Вселенных с параметрами H0, Hd и Hs

Каждая из сверхновых – ближняя и далёкая – в момент скачка параметра Хаббла определённо находились на разных расстояниях от Земли, иначе они не достигли бы её одновременно. Поэтому ближние двигались на поздних этапах расширения и набрали, соответственно, меньшую скорость. Самая дальняя же "захватила" период скачка полностью и, следовательно, набрала более высокую скорость.

Но особенность этой модели заключается и в том, что известный вид диаграммы "тусклый – яркий" присущ также и Вселенной, расширяющийся в наши дни замедленно:

Вновь заметим, что в этом случае параметр Хаббла следовало бы обозначить как Had. На рисунках рис.11.21 и рис.11.22 видно, что за всё время существования Вселенной она расширялась фактически с ускоренным параметром Хаббла, кроме последнего периода, на рис.11.22. В последний миллиард лет расширения произошла инверсия – Вселенная расширялась с замедлением. Тем не менее, в обоих случаях диаграммы Хаббла демонстрируют пониженную яркость дальних сверхновых и повышенную – сверхдальних. Участок диаграммы для дальних сверхновых находится выше диаграммы для Вселенной, условно расширяющейся равномерно с параметром Hs. Участок для ещё более далёких сверхновых смещён ниже этой диаграммы.

Для рассмотренного на рис.11.22 варианта Вселенной приведём полный набор графиков движения самой далёкой наблюдаемой сверхновой – рис.11.23.

Обращаем внимание, что в соответствии с отрицательным знаком параметра Хаббла такая условная Вселенная на начальном этапе не расширялась, а сжималась, график R(t). Иначе говоря, изначально она обладала отрицательной скоростью v(t), которая в наши дни изменила направление и достигла скорости света. Свет от вспышки сверхновой распространялся практически так же, как в стационарной Вселенной. По графикам мы видим, что пути фотонов – фактический путь Rco и путь хаббловский Rф – практически не различаются, поэтому влияние поперечного хаббловского расширения светового потока сводится к обычному закону обратных квадратов.

Наблюдаемые удалённость Rco и скорость Vc также практически совпадают с теоретическими значениями R(t) и v(t), соответственно. Лишь спустя 8 млрд. лет расширение Вселенной стало заметным, а спустя 12 млрд. лет скорость расширения резко возросла. В последний миллиард лет наша условная Вселенная вновь стала расширяться с замедлением вплоть до наших дней.

Рис.11.23. Графики движения самой дальней видимой сверхновой в замедляющейся Вселенной с параметром Hd

Хотя Вселенная выглядит отчасти как стационарная, диаграммы Хаббла отчётливо показывают зависимость красного смещения, скорости сверхновых от их удалённости. Причём осталась в силе метафора "дальние сверхновые более тусклые". И, соответственно: сверхдальние, наоборот, более яркие.

Выходит, что в классическом, прямолинейном виде диаграмма Хаббла R(v) = Rs(v) будет в нашей реальной Вселенной наблюдаема только в случае параметра Хаббла H0(t) = Hs, имеющего форму латинской буквы L, лежащей "на спине". Именно с таким параметром Хаббла диаграмма будет иметь классический вид рис.11.24:

Рис.11.24. Наблюдаемые диаграммы Хаббла для Вселенных с параметрами H0 и Hs. Диаграмма Rs соответствует Вселенной, которая большую часть времени была стационарной

На рисунке представлены две диаграммы Хаббла, а на врезке – соответствующие им параметры Хаббла. Обе диаграммы являются наблюдаемыми, результаты измерения скорости и яркости каждой сверхновой в своей Вселенной в точности лягут на соответствующую линию. Однако на самом деле их реальные, действительные удалённости и скорости удаления будут иными. Отметим, что Вселенная с параметром Hs основную часть времени существования является стационарной. Графики движения самой дальней наблюдаемой сверхновой в этой Вселенной показаны на рис.11.25. Графики соответствуют частично стационарному параметру Хаббла Hs.

На рисунке видно практически полное совпадение пар параметров: R(t) и Rc (путь фиктивного источника фотонов), Rф (хаббловский путь фотонов) и Rco (измеренный, реальный путь фотонов), v(t) и Vc (скорость фиктивного источника фотонов). Это означает, что наблюдаемые данные (вторые в парах) практически совпадают с теоретическими параметрами, которые соответствуют постоянной Хаббла H0. Буквально это следует трактовать, что классические диаграммы Хаббла соответствуют параметру Hs, а не параметру H0. Именно во Вселенной с параметром Hs будет наблюдаться классическая, прямолинейная диаграмма Хаббла с углом наклона, соответствующим величине H0. Хотя на предыдущей диаграмме видна действительная L-образная форма параметра Хаббла.