Здесь следует признаться, что приведённые рассуждения кажутся нам всё-таки довольно сложными и выглядящими недостаточно полными, убедительными, поэтому приведём дополнительные пояснения.
Наши вычисления о пройденном фотонами пути относятся к системе отсчёта, которую можно называть фиктивной системой отсчёта источника. Можно сказать иначе: к системе отсчёта фиктивного источника. В этой системе учитывается путь, пространство, удлиняющиеся только перед движущимся фотоном. Следовательно, в момент встречи фотона с Землёй оба они находятся на реальном удалении от источника, равном пути, пройденному фотоном, в данном случае – 13 млрд. световых лет.
Исходя из этого, эквивалентно получается, что это именно Земля удалилась от источника в результате расширения пространства с соответствующим параметром Хаббла – H(t). Следовательно, в момент получения фотона на Земле она приобретёт скорость, отвечающую этому движению, то есть скорость приёмника относительно источника, используемую в расчётах эффекта Доплера. Особо отметим, что это не приращение скорости Земли, приёмника, а её абсолютное значение относительно источника. Действительно, в момент "отправки" фотона от источника их начальные скорости равны, поэтому их можно принять равными нулю. В момент "встречи" с Землёй область пространства с фотоном, приёмник имеет отмеченную абсолютную скорость относительно её положения в момент излучения.
Исходя из этого, мы имеем все основания произвести ретроспективу времени и найти условное начальное положение Земли относительно источника, как эквивалент начального положения движущейся области с фотоном. Для удобства, удобства графического изображения находим положение области в момент начала расширения Вселенной, то есть, не 13, а 14 млрд. лет назад – ri. Это допустимо, поскольку обе эти точки находятся на одном графике. Теперь мы можем найти и скорость Земли в момент наибольшего её удаления от источника, в наши дни – Vc(14), в момент получения фотона. Ещё раз отметим, что на самом деле от источника удалялся "доплеровский приёмник", а не Земля, которая в конце просто оказалась в нужной точке.
Диаграммы для действительных источников
Исходя из этих данных, наблюдаемые диаграммы Хаббла рис.11.3 и рис.11.5 также приобретут иной вид, вид, который соответствует действительным источникам фотонов – вид прямолинейной теоретической диаграммы Хаббла R(v) на рис.11.3.
В этом случае получается, что даже на основе наблюдаемых параметров сверхновых мы будет получать одну и ту же связку скорость-яркость любой сверхновой, одну и ту же, как для равномерно расширяющейся Вселенной, так и расширяющейся ускоренно или замедленно.
Как видно на рис.11.8абв, для сверхновой, вспыхнувшей 14, 10 или 6 млрд. лет назад мы получаем одно и то же значение параметра Хаббла:
Буквально это означает, что при таком подходе никакие реальные наблюдения не позволяют нам определить предысторию расширения Вселенной, как она расширялась в прошлом. Однако эти же тождества сразу же поднимают серьёзный вопрос. Они никак не проясняют, почему дальние сверхновые видны более тусклыми, чем это следует из стандартной линейной диаграммы Хаббла, в том числе и из полученных здесь новых диаграмм. На каждой из них, для соответствующего значения параметра Хаббла, точки каждого единичного наблюдения неизбежно должны ложиться на стандартную прямолинейную диаграмму. Никакой пониженной яркости при этом возникнуть не может.
Однако астрономические наблюдения показывают, что дальние сверхновые всё-таки менее яркие. Для объяснения этой пониженной яркости можно сделать достаточно разумное предположение. В процессе движения потока фотонов пространство испытывает помимо продольного расширения также и поперечное. Совершенно очевидно, что удлиняется не только волна излучения, но и расстояние между соседними волнами в пучке света.
Как известно, угловое расширение светового потока позволяет определить удалённость источника света. Действительно, о реальной удалённости объекта, стандартной свечи мы судим по её яркости, которая в неподвижном пространстве уменьшается обратно пропорционально квадрату расстояния.
В неподвижном пространстве отношение площадей фотонных потоков прямо пропорционально квадратам их удалённостей. Но в расширяющемся пространстве эта квадратичная пропорция нарушается, поскольку площадь сечения потока в процессе удаления увеличивается за счёт расширения пространства. Яркость же обратно пропорциональна площади потока, поэтому в расширяющемся пространстве источник виден тем более тусклым по сравнению с квадратичной зависимостью, чем дальше он находится.