Выбрать главу

Понятие истины для формализованных теорий может быть введено посредством формально точной и материально адекватной дефиниции. Поэтому оно может быть использовано без каких-либо ограничений и оговорок в метатеоретических дискуссиях. Понятие истины действительно стало фундаментальным металогическим понятием, которое приводит к важным проблемам и результатам. С другой стороны, понятие доказательства также не потеряло своего значения. Доказательство все еще является единственным методом, используемым для утверждения истинности предложений в рамках любой математической теории. Однако теперь мы осознаем тот факт, что существуют предложения, сформулированные на языке данной теории, которые являются истинными, но недоказуемыми, и мы не можем не принимать в расчёт возможность того, что некоторые такие предложения имеются и среди тех, в которых мы заинтересованы и которые мы пытаемся доказать. Следовательно, в некоторых ситуациях у нас неизбежно должна возникать потребность расширения множества доказуемых предложений. С этой целью мы обогащаем данную теорию, включая новые предложения в систему её аксиом или вводя в неё новые правила доказательства. Осуществляя это, мы пользуемся понятием истины как своеобразным ориентиром, ибо мы стремимся добавлять новые аксиомы или новые правила доказательства только в том случае, если имеем основание полагать, что новые аксиомы являются истинными предложениями или что новые правила доказательства, если их применять к истинным предложениям, не могут привести к предложениям ложным.

В обогащённой теории множество доказуемых предложений является более обширным, чем в исходной теории, но оно всё еще не содержит всех истинных предложений. Этот процесс расширения теории, конечно, может быть повторен бесконечное число раз. Понятие множества истинных предложений функционирует, таким образом, как некий идеальный предел, который никогда не может быть достигнут, но к которому мы пытаемся приблизиться путем постепенного расширения множества доказуемых предложений. (Вероятно, понятие истины, хотя и по другим причинам, играет аналогичную роль и в сфере эмпирического знания). В истории математики не существует конфликта между понятиями истины и доказательства.