Выбрать главу

Арифметические методы Валлиса для вычисления площадей оказали огромное влияние на Ньютона, который подтвердил, что идеи о биноме и других основных понятиях математического анализа возникли у него после тщательного изучения книги Валлиса во время учебы в Кембридже. Сам Валлис предложил любопытную родословную анализа бесконечно малых.

1. Метод исчерпывания (Архимед).

2. Метод неделимых (Кавальери).

3. Арифметика бесконечного (Валлис).

4. Метод бесконечных рядов (Ньютон).

Центры тяжести

С расчетом площади и объема тесно связана задача об определении центра тяжести. В конце XVI века, после того как был обнаружен труд Архимеда «О равновесии плоских фигур», некоторые математики начали уделять внимание решению подобных задач. Среди них были два переводчика трудов Архимеда на латынь Франческо Мавролико (1494—1575) и Федерико Коммандино (1509—1575), а также Симон Стевин, который систематизировал и упростил методы Архимеда.

Несколько позднее появились работы швейцарского математика Пауля Гюльдена (1577—1643), который повторно открыл теорему об объемах тел вращения и центрах тяжести, известную как теорема Гюльдена, хотя она упоминается еще в «Собрании» Паппа Александрийского: «Объем тела вращения равен площади фигуры, умноженной на длину окружности, радиусом которой служит расстояние от оси вращения до центра тяжести фигуры». Гюльден вел ожесточенный спор с Кавальери (оба они были иезуитами) о методе неделимых: швейцарец обвинял Кавальери, с одной стороны, в плагиате кеплеровских идей, с другой — в отсутствии логической последовательности при рассмотрении площади как совокупности отрезков. Гюльдену удалось привести простое и элегантное геометрическое построение, где метод неделимых Кавальери вел к противоречию. Однако доказательство Гюльдена, которое он привел для своей теоремы, изобиловало метафизическими рассуждениями и было еще более спорным, чем методы Кавальери. Последний не замедлил указать на это в ответ на нападки Гюльдена.

Расчет угла наклона касательной

Методы анализа бесконечно малых, связанные с расчетами угла наклона касательной, наряду с задачами вычисления объемов и площадей относятся к числу задач, изучение которых привело к появлению математического анализа.

Само понятие касательной, «прямой, которая касается кривой в одной точке», вызвало множество трудностей, так как с помощью аналитической геометрии Ферма и Декарта можно было с легкостью вводить новые кривые, и, как следствие, предметом изучения математиков стал широкий спектр различных кривых. В этом смысле интересный пример представляют логарифмы, появившиеся как средство упрощения операций умножения, деления и извлечения корня из больших чисел, что использовалось в астрономических наблюдениях. Это позволило составить очень точные таблицы положений звезд и небесных тел. В итоге была введена логарифмическая функция и соответствующая ей кривая, для которой можно вычислить ограниченную ею площадь, угол наклона касательной и так далее. Рост числа изучаемых кривых привел к тому, что старое определение касательной как прямой, которая касается кривой в одной точке, стало не вполне удобным. Кроме того, потребовались новые методы нахождения касательных к новым кривым. Следует упомянуть метод, предложенный Ферма, также применимый в задачах определения максимумов и минимумов и для спрямления кривых. В знак признания этих и других работ о квадратурах некоторые французские математики XVII века (французом был и Ферма) считали его создателем математического анализа. Важность этих результатов Ферма несколько преувеличена, но сам Ньютон в письме, найденном в 1934 году, признавал, что в своих работах по математическому анализу он опирался на метод касательных Ферма: «Указание я получил из метода касательных Ферма. Применив его к абстрактным уравнениям прямым и обратным способом, я придал этому методу общий характер». Как бы то ни было, Ферма, «король среди любителей», как называл его шотландский математик и писатель Эрик Темпл Белл, имея в виду его непрофессиональные занятия математикой, занимает почетное место в истории науки. Это право он заслужил не только за предполагаемое доказательство своей знаменитой теоремы, для которого оказались «слишком узки» поля книги.