Другие математики, помимо Ферма, также разработали новые методы для определения углов наклона касательных, но практически во всех использовались бесконечно малые величины. Так, можно упомянуть Роберваля и его кинематический метод для нахождения касательной к спирали, который также использовали Галилей, Торричелли и Архимед. Заслуживает упоминания Декарт и его метод, представленный в труде «Геометрия», а также Барроу, Худде, де Слюза и их псевдодифференциальные методы. Все они обладали схожими недостатками: они были в достаточной степени применимы к алгебраическим кривым, но требовали изменений для каждой конкретной кривой, что было чрезвычайно сложно, а иногда и вовсе невозможно сделать для трансцендентных кривых. Все эти методы были унифицированы с помощью дифференциала, введенного Лейбницем, и флюксии, введенной Ньютоном. Эти понятия были близки к современной производной.
В середине этого же столетия возник важный класс задач, имевший большое историческое значение, в которых требовалось определить кривую по известным свойствам ее касательной. Первую задачу такого типа сформулировал юрист и ученик Декарта Флоримон де Бон (1601—1652). Возможно, самой известной из предложенных им задач является задача о нахождении кривой с постоянной подкасательной. Эту задачу не удалось решить самому Декарту, и вся слава досталась Лейбницу: как вы увидите чуть позже, он привел решение в первой в истории книге по анализу бесконечно малых и тем самым продемонстрировал всю мощь созданного им метода.
Для создания математического анализа обязательно (и неизбежно) требовалось признать, что задачи о касательной и о квадратуре являются обратными друг другу. Говоря современным языком, необходимо было показать, что дифференцирование и интегрирование — взаимно обратные операции. Именно в этом заключается основная теорема анализа, которая неспроста носит это название. Этот факт был известен Ферма, Торричелли и прежде всего Барроу, однако по причинам, о которых мы расскажем позднее, они не поняли всю его важность для решения задач, его значимость как связующего элемента двух классов задач — о касательных и квадратурах. Основная теорема анализа указала математикам путь, которым нужно следовать: выделять общее и наиболее значимое из множества частных случаев.
Исаак Барроу (1630—1677) был одним их тех гигантов, о которых говорил Ньютон в письме Роберту Гуку в феврале 1676 года: «Если я видел дальше других, то потому, что стоял на плечах гигантов» (из главы 3 вы узнаете, что эта фраза допускает еще одно, достаточно нелицеприятное толкование). Барроу был учителем Ньютона в Кембридже и первым лукасовским профессором математики. Он оставил этот пост в 1669 году (его заменил Ньютон), занялся богословием (он был англиканским пастором с 1660 года) и стал духовником короля Англии Карла II. Возможно, он подошел ближе всех к открытию математического анализа, за исключением Ньютона и Лейбница. Ему не хватало самой малости — знаний аналитической геометрии. Барроу создал метод нахождения касательных, очень похожий на вычисление производной. Кроме того, он добился важных результатов при решении задач по расчету площадей, а также доказал, что задачи нахождения касательной и задачи на вычисление площади являются обратными. Возможно, он руководствовался идеями Торричелли, с которым познакомился во время путешествия во Францию, Италию, Германию, Голландию и Константинополь, когда ему пришлось по религиозным мотивам покинуть Англию, где в то время правил Оливер Кромвель. Его доказательство приводится в лекции X его книги Lectiones geometricae. Оно является чисто геометрическим и выполняется для монотонных кривых. В нем также используется старое определение касательной как прямой, которая касается кривой в единственной точке.