Благодаря настойчивости Галлея, гениальности и невероятной трудоспособности Ньютона через два с половиной года свет увидела книга De motu en los Philosophiae naturalis principia mathematica — «Математические начала натуральной философии». Члены Лондонского королевского общества, ознакомившись с рукописью, постановили: «Математические начала натуральной философии» господина Ньютона должны быть незамедлительно опубликованы форматом в четверть листа». Публикацию книги Галлею пришлось оплатить из своего кармана, что стало серьезным испытанием для юного члена Королевского общества.
«Начала» были изданы в трех томах с предисловием, в котором, помимо прочего, изложены три закона Ньютона. В третьем томе под названием «Система мира» описываются законы движения небесных тел. В нем центростремительная сила, которая удерживает планеты на эллиптических орбитах, отождествляется с силой тяготения. Как следствие, сила, удерживающая Луну на орбите, — это та же самая сила, под действием которой предметы падают на поверхность Земли. Кроме того, сила тяготения действует на все тела во Вселенной. Она пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними. Так как следствием этого закона являются законы Кеплера о движении планет, это означает, что под действием этой же силы движутся спутники планет и кометы вокруг Солнца. Этим же объясняется неравномерность движения планет, которую Ньютон изучал на примере Луны. В предисловии к первому изданию «Начал» Галлей писал: «Мы наконец узнали, почему нам кажется, что Луна порой движется неравномерно, как будто насмехаясь над нами, когда мы пытаемся описать числами ее движение, до сей поры загадочное для любого астронома».
В «Системе мира» также рассматривались и другие вопросы. Заслуживает упоминания теория, по которой приливы вызваны притяжением Солнца и Луны, а также теория о форме планет, которые всегда сплющены у полюсов (форма планет определяет период их обращения вокруг своей оси). Последняя теория была окончательно подтверждена французскими экспедициями XVIII века в Лапландию и Перу, целью которых было измерение дуги меридиана. Эти экспедиции ознаменовали окончательный триумф системы Ньютона над системой Декарта.
Ньютон и анализ бесконечно малых
Исаак Ньютон — один из самых известных и уважаемых ученых всех времен. Хотя это часто не принимается во внимание, но он в наибольшей степени обязан этой славе своим способностям к математике. Именно благодаря им он заметно выделялся среди других ученых того времени, и без них было бы невозможно написание его главного труда — «Математические начала натуральной философии». Иными словами, Ньютон открыл «систему мира», благодаря чему, как удачно заметил Лагранж, стал самым удачливым из всех ученых, поскольку существует лишь одна система мира, которую можно открыть. Именно благодаря глубоким знаниям математики, которыми не обладали его современники, Ньютон смог подкрепить и обосновать свои открытия. По словам Вестфолла, «математика была первой и главной страстью Ньютона. Именно из математики он заимствовал критерии логической строгости, которых неизменно придерживался на протяжении всего своего пути в науке. Ньютон собирался совершить плавание по неизвестным океанам мысли, из которых не вернулись многие искатели приключений XVII века. Ньютон не просто вернулся из этого путешествия — он привез с собой трофеи. Возможно, именно математическая дисциплина помогла ему добиться успеха».
Многие считают, что Ньютон был исключительно физиком, точнее натурфилософом, или занимался прикладной математикой. Стоит напомнить, что писал по этому поводу Дерек Том Уайтсайд, составитель прекрасного восьмитомника рукописей Ньютона по математике: «Никогда не следует забывать, что математика была для Ньютона не просто набором инструментов для поиска истины. Она обладала внутренней красотой и силой, не зависящей от внешних причин и способов практического применения. Тем, кто не чувствует элегантность и мощь математики как самостоятельной дисциплины, я представляю Ньютона — «чистого» математика, который, как в библейской метафоре, удалился от мира в башню из слоновой кости в Кембридже, где занимался поисками новых теорем, свойств, алгоритмов и доказательств, элегантных самих по себе. И сколь удивительно он использовал свой талант и способности! В то время в мире не было более одаренного и разностороннего математика, никого, кто больше него разбирался бы в алгебре, геометрии и в тонкостях анализа бесконечно малых».