Выбрать главу

О задачах расчета квадратуры он писал: «Проблема IX: определить площадь какой-либо заданной кривой. Решение этой проблемы зависит от определения отношения флюент по заданному отношению флюксий». Иными словами, речь идет о процессе, обратном вычислению флюксии; если говорить современным языком — о процессе, обратном вычислению производной, то есть о нахождении первообразной. Здесь Ньютон, по сути, излагает основную теорему анализа и указывает, что ее можно применять для решения задач о площадях.

Чтобы доказать мощь своего анализа бесконечно малых, в «Методе» Ньютон использует его для решения практически всех задач о площадях, касательных и многих других, на решение которых его предшественники потратили без малого столетие. Однако «Метод» был опубликован лишь спустя несколько лет после смерти Ньютона.

Почему он так долго не давал разрешение на публикацию своих первых книг об анализе бесконечно малых? Мы уже упоминали, что Ньютон не желал публиковать свои результаты из-за особенностей своего характера. В итоге это спровоцировало ожесточенные споры, которых можно было бы избежать, если бы его первые труды были опубликованы без промедления. Нежелание Ньютона публиковать свои работы о математическом анализе было сильно еще и потому, что он осознавал его недостаточную логическую строгость. Понятие флюксии и правила ее вычисления, равно как и дифференциал Лейбница или многочисленные методы работы с бесконечно малыми, предложенные его предшественниками, основывались на так называемых бесконечно малых величинах. Эти «бесконечно малые» представляли собой бесконечно малые числа, практически равные нулю, за счет чего их можно было сокращать при необходимости. В то же время эти величины можно было использовать в знаменателях дробей, так как они не были строго равны нулю. Ньютон безуспешно пытался избежать их и в одной из работ по анализу, «Рассуждении о квадратуре кривых» (De quadratura curvarum), опубликованной в 1704 году как приложение к его же «Оптике», он вплотную подошел к открытию предела, использовав «исчезающие приращения». Это понятие было введено лишь в XIX веке, и Бернард Больцано и Огюстен Луи Коши использовали его как основу анализа бесконечно малых.

Литографический портрет Огюстена Луи Коши, одного из самых плодовитых математиков всех времен. 

Ньютон осознавал, что его вычисление флюксий стоит на непрочном логическом фундаменте, поэтому особенно противился публикации любых трудов по этой теме, хотя копии этих рукописей всегда были доступны кругу его друзей. Этот страх, несомненно, оказал влияние и на подготовку его важнейшей работы — «Начал». Ньютон сделал выбор в пользу геометрического языка в древнегреческом стиле, который был менее понятным, но более строгим с логической точки зрения. Он исключил почти все упоминания об анализе бесконечно малых, который, возможно, использовал для получения части результатов, изложенных в «Началах».

Тем не менее в «Началах» содержатся отрывочные упоминания о математическом анализе. Таким образом, в этой книге впервые, пусть и косвенно, упоминается анализ бесконечно малых, созданный Ньютоном. Это произошло в 1687 году — спустя три года после того, как Лейбниц опубликовал в журнале Acta eruditorum свою первую статью о дифференциальном исчислении. В лемме II раздела II 2-й книги несколько туманно упоминаются правила, аналогичные современным правилам вычисления производной произведений и степеней. Ньютон применил математический трюк, чтобы избежать сокращения приращений. Этот трюк в середине XVIII века разоблачил Джордж Беркли, который возглавил «крестовый поход» против бесконечно малых. «Начала» вошли в историю математического анализа не только благодаря этой лемме. К математическому анализу можно отнести и другие утверждения, о которых мы расскажем чуть позже, когда будем говорить об ожесточенном споре между Ньютоном и Лейбницем за право называться создателем исчисления.

ПРОИЗВОДНАЯ ПО НЬЮТОНУ

В «Началах» Ньютон приводит следующее доказательство правила нахождения производной произведения функций: «Любой прямоугольник, например АВ, увеличенный на непрерывную флюенту, если вычесть из сторон А и В половины их моментов а и b [под моментами понимаются приращения], будет равен: