Выбрать главу

«Мораль пуританского мира, — пишет Ф. Мэнюэль, — подобно любой христианской морали предписывает любить Бога и ближнего своего. К этим двум принципам Ньютон сводил всю религию. Однако в пуританстве также предписывалось искоренять зло. Любить и разрушать — такой была противоречивая догма».

Глава 6.

Укрощенные бесконечно малые

Бесконечности, большие и малые

Анализ бесконечно малых был наполнен бесконечно большими и бесконечно малыми величинами с самого момента создания, в течение первых трех четвертей XVII века, когда его продвинули вперед Ньютон и Лейбниц, равно как и позднее, в течение всего XVIII века. Бесконечно малая величина — это числовая функция или последовательность, которая стремится к нулю. Так как она не является строго равной нулю, ее можно использовать в знаменателе дроби, а так как она является бесконечно малой, ее можно принять равной нулю, когда мы хотим упростить выражение. Бесконечно большая величина, в свою очередь, остается неизменной, когда мы прибавляем к ней обычное число. Иными словами, если N — бесконечно большая величина, то выполняется достаточно необычное равенство: N + 1 = N.

Разумеется, из-за этих необычных свойств существование бесконечно больших и бесконечно малых неоднократно ставилось под сомнение. Анализ бесконечно малых регулярно критиковался из-за того, что он был основан на бесконечно малых величинах. Критики задавались вопросом: как можно получить верный результат с помощью метода, в основе которого лежит понятие, столь нечеткое с точки зрения логики?

Математики, которые начали использовать бесконечно малые в XVII веке, — Кеплер, Кавальери, Ферма, Валлис, Паскаль, Барроу (этот список далеко не полон), много раз указывали, что подобные рассуждения приводил еще Архимед. Однако они не утруждали себя написанием строгих доказательств — в отличие от Архимеда. Известные в то время труды Архимеда были опубликованы в середине XVI века, и прошло почти 50 лет, прежде чем математики того времени смогли понять и применить его непростые методы. Архимед был наиболее цитируемым автором в течение всего XVII века. Как мы уже говорили в главе 2, математики этого периода очищали методы Архимеда от геометрической «оболочки» и приводили их в арифметическом и алгебраическом виде. Эти разделы математики набирали популярность в течение XVII века, особенно после открытия аналитической геометрии Декартом и Ферма. В то время математиков больше интересовали открытия, которые можно совершить, используя необычные свойства бесконечно малых, и они не тратили время на построение строгих геометрических доказательств.

Во многих случаях подобное пренебрежение строгостью объяснялось попросту нежеланием заниматься излишней работой: «Всё это можно доказать, используя архимедовы техники, однако это потребует больших усилий», — писал Кавальери в 1635 году.

Ньютон, Лейбниц и бесконечно малые

Даже создатели математического анализа не приводили исчерпывающих доказательств открытых ими методов. И Ньютон, и Лейбниц осознавали недостаток логики в своих работах и пытались каждый по-своему если не устранить, то хотя бы смягчить этот недостаток.

Так, Ньютон попытался избежать использования бесконечно малых путем перехода к пределу, однако потерпел неудачу. Тем не менее его усилия стали источником вдохновения для Коши. Покажем, как следует понимать дробь 0/0, получаемую при h = 0 в выражении

необходимом для определения производной f(x) функции f в точке х. Здесь мы позволим себе небольшой анахронизм. Сам Ньютон никогда не использовал понятие производной функции, равно как и не использовал подобные обозначения, а вместо этого употреблял понятие «исчезающая величина». Таким образом, разность f(x + h) — f(x) и само число h будут исчезающими величинами: обе они «исчезают», когда h становится равным нулю. «Последним отношением исчезающих величин» он называл значение вышеуказанной дроби при h = 0. Очевидно, что Ньютон имеет в виду переход к пределу, когда говорит о «последнем отношении исчезающих величин», чтобы обосновать неопределенность 0/0, к которой сводится вышеприведенная дробь при h = 0. Однако он так и не дал этому методу строгого определения. Сам Ньютон осознавал этот недостаток и в объяснении прибегал к физическим аналогиям: «Вероятно, вы можете возразить, что последнего отношения исчезающих величин не существует, поскольку до того как величины исчезают, отношение не является последним, а когда величины исчезают, никакого отношения не существует. Однако, следуя этой же логике, можно отрицать, что тело, которое прибыло в определенную точку и остановилось в ней, не имеет последней скорости, поскольку до этого его скорость не была последней, а после того как тело прибыло в эту точку, его скорость равна нулю. Однако ответ на этот вопрос крайне прост. Под последней скоростью понимается скорость, с которой движется тело в самый момент прибытия, не раньше и не позже, то есть скорость, с которой тело прибыло в последнюю точку и с которой его движение прекратилось. Этим же образом под последним отношением следует понимать отношение величин не до того, как они исчезнут, и не после того, как они исчезнут, а отношение, при котором они исчезнут».