Процесс дифференциации и специализации в биологии продолжается и в наши дни..
В связи с прогрессирующим разветвлением биологических наук, усложнением методики и техники биологического наблюдения и эксперимента и с необходимостью получения точной количественной характеристики изучаемых явлений в XX в. все реже встречаются ученые-энциклопедисты, способные охватить в научном поиске одновременно несколько проблем из различных областей биологии. Роль таких ученых перешла к научным коллективам лабораторий и исследовательских центров.
Уже начиная с первых десятилетий XX в. специалисты разных отраслей биологии стали приходить к заключению, что важнейшие проявления жизнедеятельности — обмен веществ и энергии, дыхание, передача и реализация наследственной информации — связаны с процессами, протекающими в организмах на субклеточном и молекулярном уровнях. Однако до середины 40-х годов непосредственный анализ этих процессов был полти невозможен из-за отсутствия соответствующих технических средств и недостаточной зрелости самих биологических дисциплин.
Вторая половина 40-х годов — важный рубеж в истории биологии XX в. С этого момента началось широкое проникновение в дотоле совершенно недоступную для познания область элементарных процессов жизнедеятельности, совершающихся на молекулярном уровне. Чрезвычайно быстрыми темпами стали развиваться новые представления о биохимических основах жизни, изменившие весь облик биологии. Возникла совершенно новая отрасль — молекулярная биология, стремящаяся раскрыть биологические функции молекул различных химических веществ и пути их реализации. Успехи в изучении жизненных явлений на субклеточном и молекулярном уровнях вели к быстрому отпочкованию все новых и новых отраслей и направлений. Так возникла биохимическая эмбриология, изучающая химические основы регуляции роста, дифференциации и развития организмов на эмбриональных стадиях, биохимическая (молекулярная) генетика, радиоэкология. Часто объекты исследования молекулярных отраслей биологии оказываются столь близкими, что их разграничение становится условным. Все это свидетельствует о том, что биология вступила в стадию коренных, революционных преобразований, являющихся составной частью общей научно-технической революции.
За 25 лет существования молекулярной биологии сделаны открытия огромного значения: выяснена структура и механизм биологических функций молекул ДНК, всех типов РНК и рибосом; расшифрован генетический код и доказана его универсальность; произведен химический, а затем и биологический (ферментативный) синтез гена, в том числе гена человека, in vitro; благодаря раскрытию принципа матричного синтеза разрешена кардинальная общебиологическая проблема специфичности биосинтеза белка; обнаружены два принципа воспроизведения молекулярных и надмолекулярных структур — редупликация (у ДНК) и «самосборка» (у ферментов, рибосом, хромосом, вирусов и т. д.); разработан подход к изучению механизмов регуляции генной активности; открыта обратная транскрипция — синтез ДНК на основе РНК; расшифрована последовательность расположения аминокислот более чем в 200 белках, выяснены их вторичная структура и способ укладки полипептидных нитей в молекуле (третичная и четвертичная структура); доказана нуклеопротеидная структура хромосом, вирусов и фагов; изучены механизмы функционирования дыхательных пигментов; установлено биохимическое единство основных процессов жизнедеятельности почти во всем органическом мире. Уже простой перечень этих открытий, который можно было бы легко продолжить, свидетельствует о крутом подъеме биологии во второй половине XX в. Важнейшим общим итогом развития молекулярной биологии явилось то, что наше понимание совокупности жизненных явлений как двуединого процесса обмена веществ — экзо- и эндотермического — неизмеримо углубилось благодаря раскрытию потока информации, пронизывающего собой все уровни биологической организации. Составляя фундамент жизни, обмен веществ и поток информации служат наиболее общей основой единства биологических наук.
Современный прогресс молекулярной биологии и биологии в целом стал возможен благодаря разработке и широкому применению новых методов и средств исследования, базирующихся на достижениях физики, химии, математики, техники — электронной микроскопии, рентгеноструктурного анализа, метода меченых атомов, ультрацентрифугирования, хроматографии, точных приборов, работающих на повышенных скоростях и частью или полностью автоматизированных (ультрацентрифуги, ультрамикротомы, микроманипуляторы, электрокардиографы, электроэнцефалографы, полиграфы, спектрофотометры, масс-спектрографы, осциллографы и многие другие). Созданы также новые методы прижизненных исследований (культуры клеток, тканей и органов, маркировка эмбрионов, применение радиоактивных изотопов и пр.). Уже работают лаборатории, в которых можно изучать действие любых комбинаций климатических и физико-химических факторов (биотроны, фитотроны).