Выбрать главу

Работы К.С. Демирчяна, П.А. Бутырина позволили установить, что преобразование Лапласа со сдвигом во времени, представляющее собой установившуюся реакцию системы с импульсной переходной функцией вида ept на воздействие f(t), порождается интегралом Дюамеля для бесконечного интервала времени, т.е.

Такое преобразование позволяет получить решение для установившегося процесса непосредственно через изображение задающей функции F(p,t), которая для данного преобразования является функцией времени. Если система дифференциальных уравнений записана относительно переменных состояний в виде матричного уравнения dx/dt = Ax + f (t) и изображение f(t) имеет вид F(p,t), то решение для установившегося процесса для системы уравнений состояний можно записать в виде хуст = — F(A, t), и тогда полное решение системы дифференциальных уравнений будет иметь вид x(t) = eAt[x(0) + F(A,0)] — F(A,t)]. Такой подход позволяет исключить трудоемкий процесс обратного преобразования Лапласа для нахождения оригинала x(t) изображения X(p) и установить непосредственную взаимосвязь между интегралом Дюамеля и преобразованием Лапласа со сдвигом. Применение этого подхода в случае электрических цепей с периодически изменяющимися параметрами позволяет в ряде случаев (например, электрические машины) отыскать аналитические решения (П.А. Бутырин). Решение дифференциальных уравнений может быть найдено не только на основе преобразования Лапласа или Фурье (где в качестве ядра интегрального преобразования использована экспоненциальная (Лаплас) или тригонометрическая (Фурье) функция), но и других видов функций. В этом отношении методы на основе представления входящих в дифференциальные уравнения функций при помощи степенных рядов Тейлора (Г.Е. Пухов) являются оригинальными. Преимуществом этого метода является возможность его использования и для случая нелинейных уравнений.

В СССР теория переходных процессов начала привлекать внимание в связи с быстрым развитием электроэнергетики и расширением прикладных областей применения электрических цепей в приводе, электротермии, связи, автоматическом управлении и др. Важным этапом для развития исследований в этой области явилось появление работ Р. Рюденберга, К.А. Круга, молодых ученых A.M. Данилевского и A.M. Эфроса, погибших во время Великой Отечественной войны, и многих специалистов в области математики. 40–50-е годы стали новым этапом развития теории переходных процессов. Была разработана теория, предложены критерии и методы подобия для физического и математического моделирования переходных процессов в сложных системах с электромеханическими преобразователями энергии (М.П. Костенко, Л.Р. Нейман, В.А. Веников). Развитие ЕЭС потребовало разработки теории переходных процессов в электрических цепях, содержащих электрические машины и линии с распределенными параметрами, которые существенным образом влияют на перенапряжения в системах (М.В. Костенко, С.А. Ульянов, Л.Г. Мамиконянц, К.П. Кадомская, М.Л. Левинштейн, В.В. Бушуев, Ч.М. Джуварлы, Л.А. Жуков, Ю.Г. Шакарян, В.В. Постолатий и др.).