Выбрать главу

В своей лекции Планк утверждал, что согласно некоторым довольно сложным вычислениям, которые он выполнил, можно найти способ исправить парадоксальные заключения, полученные Рэлеем, и избежать опасности ультрафиолетовой катастрофы, если принять постулат, что энергия E электромагнитных волн (включая видимый свет) может существовать только в форме некоторого пакета с энергией, содержащейся в каждом пакете, прямо пропорциональной соответствующей частоте f:

«...мы рассматриваем — и это наиболее важная часть всех вычислений — Е состоит из совершенно определенного числа конечных равных частей, которые получаются путем использования для этой цели естественной константы h... Эта константа при умножении ее на частоту f резонаторов дает элемент энергии е... а путем деления Е на элемент энергии е мы получаем... число элементов энергии, которые распределены среди N резонаторов».

Эта гипотеза, известная как квантовая теория, предполагает, что энергия может испускаться только дискретными величинами, или пакетами, а не непрерывно изменяемыми величинами. Минимальная энергия, которую осциллятор может испустить на частоте f, является произведением частоты на универсальную константу, которую Планк обозначил h и которая ныне известна как константа Планка (постоянная действия).

Планк получил эту интерпретацию закона черного тела до середины ноября 1900 г., но представил свои результаты Германскому Физическому Обществу в Берлине только 14 декабря. Великий математик и физик А. Зоммерфельд (1868—1951) назвал этот день «днем рождения квантовой теории». Он, в частности, ссылался на тот факт, что Планк рассматривал «наиболее существенным пунктом» своей теории гипотезу, что энергия распределяется среди резонаторов полости только целыми кратными элементами конечной энергии.

Спустя более чем 30 лет в письме своему другу физику, специалисту в оптике и спектроскопии, Р. В. Буду (1868-1955) от 7 октября 1931 г., Планк оправдывался:

«короче говоря, я могу охарактеризовать всю процедуру как акт отчаяния, т.к. по своей природе я миролюбив и не склонен к сомнительным авантюрам. Однако я уже бился 6 лет (с 1894 г.) над проблемой равновесия между излучением и веществом без каких бы то ни было успехов. Я сознавал, что эта проблема имела фундаментальную важность для физики, и я узнал формулу, описывающую распределение энергии в нормальном спектре (т.е. спектр черного тела); следовательно, требовалось найти любой ценой теоретическую интерпретацию, однако эта цена могла быть высокой».

Парадоксально, что революционная гипотеза Планка не была немедленно принята, но ученые того времени не понимали, что родилась новая физика. Сам Планк не признавал революции, которую он вызвал, считая, что квантование энергии не более чем простая математическая модификация, полезная для вычислений. Он не думал, что энергия действительно концентрируется в дискретных квантах. Будучи глубоко консервативным человеком, он в течение ряда лет ограничивал свои размышления рассмотрением своей теории квантования энергии просто как удобную гипотезу, которая позволяет применить статистику Больцмана к проблеме излучения.

Точно так же физики первых лет XX в. использовали формулу черного тела как эмпирическую, и сам Планк старался ограничить концепцию квантования и произвел две последовательные модификации своей теории, в которых сумел получить ту же формулу без необходимости предположения, что процессы поглощения включают обмен энергии квантами, т.е. кванты энергии (1914 г.). Научному сообществу потребовалось несколько лет, чтобы осознать его вклад и присудить ему Нобелевскую премию по физике лишь в 1918 г. «в признание заслуг, которые он оказал развитию Физики своим открытием квантов энергии».

Среди тех первых, которые указали, что что-то не вполне правильно, был Рэлей, который в 1905 г. снова обратился к своей формуле 1900 г., отмечая, что формула Планка сводится к ней в пределе низких частот, и заключал:

«Критическое сравнение двух процессов [т.е. его собственного и Планка] представляет интерес, но не следуя за соображениями Планка, я не могу принять их. Как применяемая ко всем длинам волн, его формула могла бы иметь большее значение, если бы была удовлетворительно установлена. С другой стороны, соображения, которыми я руководствовался [мое уравнение] очень просты, и эта формула, как казалось мне, является необходимым следствием закона равновесности, как он был утвержден Больцманом и Максвеллом. Мне трудно понять, как еще один какой-нибудь процесс, также основанный на идеях Больцмана, может привести к другому результату».

Таким образом, Рэлей указал факт появления новой концепции, обычно называемой «кризисом классической физики».

В это самое время гениальные соображения неизвестного служащего Патентного бюро в г. Берне (Швейцария) укрепили теоретические основы понимания явлений испускания и поглощения света. Этим неведомым служащим был Альберт Эйнштейн. Как мы увидим, Эйнштейн полностью принял концепцию квантования и предположил, что излучение ведет себя так, как если бы оно состояло из квантов энергии, что проявляется не только в процессах испускания и поглощения, но что кванты существуют независимо в виде частиц в вакууме. Однако прежде чем обсуждать эти фундаментальные концепции, нам нужно описать еще одну важную революцию, связанную с открытием строения атома и ее роль в излучении света.

ГЛАВА 4

ATOM РЕЗЕРФОРДА—БОРА

Концепция атома как сложной системы, содержащей внутри себя как отрицательные заряды (электроны), так и положительные (необходимые для нейтрализации электронов и делающие атом электрически нейтральным), была введена, как мы видим, между 19 и 20 столетиями. В 1911 г. благодаря фундаментальным экспериментам, выполненными Резерфордом, была разработана модель, которой мы, с некоторыми модификациями, пользуемся и поныне.

Резерфорд и планетарный атом

Эрнст Резерфорд (1871—1937) родился в маленьком городке Южного острова Новой Зеландии в семье выходца из Шотландии. Его мать была школьной учительницей и великолепно играла на рояле, что было необычным в Новой Зеландии того времени. Его отец, энергичный и умелый фермер, организовал выгодный бизнес по производству веревок и канатов. Многочисленная семья молодого Эрнста жила вдали от больших городов на семейной ферме.

В 10 лет Эрнст прочел популярную книгу по физике и, как это случалось с другими физиками в подобных случаях, был увлечен ею. После школы второй ступени и колледжа, где он был первым на экзаменах по английскому языку, латыни, истории, математике, физике и химии, в 1889 г. получил стипендию университета Новой Зеландии. Там он получил ученую степень, представив диссертацию по магнетизму железа, получаемого при высокочастотных электрических разрядах. В 1894 г. он выиграл стипендию, которая позволяла ему продолжить занятия в Англии. История гласит, что он получил эту новость во время выкапывания картошки и воскликнул: «Это последняя картошка, которую я выкапываю в моей жизни»; после чего одолжил деньги на билет и отправился в 1895 г. в Кембридж, куда был принят студентом-исследователем в знаменитую Кавендишскую лабораторию, возглавляемую Дж. Дж. Томсоном, открывателем электрона.