Выбрать главу

Таунс и Шавлов понимали, что нужно найти способ выделения только некоторых из этих мод, в противном случае испускаемая энергия была бы очень мала и недостаточна, чтобы превзойти все потери. Это так же, как водяной поток: если он делится на тысячи ручейков, то вода разбрасывается по земле и не достигает определенного места. После некоторых общих рассмотрений, выбором стал интерферометр Фабри—Перо, состоящий из двух высокоотражающих плоскопараллельных стенок. Они показали, что благодаря этому получается открытый резонатор, лишенный боковых стенок и состоящий только из двух параллельных зеркал. В нем захватываются только те волны, которые распространяются параллельно оси и длины которых кратны длине резонатора (т.е. расстоянию между зеркалами). Чтобы извлечь свет из такого резонатора, они предположили, что одно из зеркал будет частично прозрачным, так чтобы позволить пучку, падающему на это зеркало, частично выходить из резонатора. Идея иметь резонатор с размерами много большими, чем длина волны, предполагалась не только из-за практической невозможности сделать резонатор с размерами порядка длины волны, но также из-за того факта, что резонатор должен содержать достаточное количество активного материала.

Другой проблемой, рассматриваемой в статье, было определение минимального числа молекул или атомов активного материала, которые должны быть на верхнем энергетическом уровне, чтобы обеспечить генерацию света за счет вынужденного излучения.

Монохроматичность такого мазерного генератора также рассматривалась, и Шавлов и Таунс понимали, что это свойство очень тесно связано со свойствами шумов такого устройства, как усилитель. В лазере шум возникает из-за спонтанного излучения активного материала. Они модифицировали вычисления, которые предварительно были проведены для мазеров, и нашли, что ширина линии была порядка одной миллионной от ширины линии, соответствующей спонтанному излучению.

В работе был также раздел, посвященный обсуждению некоторых специфических примеров. В числе газовых систем они рассмотрели атомные пары калия, накачиваемые на 4047 А°, и пары цезия. Шавлов даже предварительно провел некоторые эксперименты с коммерческими калиевыми лампами и попросил Роберта Коллинса, спектроскописта Bell Labs, измерить выходную мощность этих ламп. Они рассчитали, что в случае использования паров калия будет вполне достаточно использовать излучение калиевой лампы, испускающей мощность около 1 мВт на длине волны 4047 А°. Они сочли эту оценку приемлемой, так как уже получали половину милливатта от маленькой коммерческой лампы. По ее техническим характеристикам, она должна была бы излучать только десятую долю милливатта на этой длине волны. Они также рассмотрели твердотельные устройства, хотя не были оптимистичны в отношении их.

Работа Шавлова и Таунса вызвала значительный интерес, и многие лаборатории начали поиск возможных материалов и методов для оптических мазеров. Таунс и его группа в Колумбии начали попытки создать оптический мазер на парах калия. Он работал с двумя аспирантами X. Камминсом и И. Абелла. В то же время к их группе присоединился О. Хивинс, профессор физики университета Йорка (Англия), мировой эксперт в области высоко-отражающих зеркал. Таунс понимал, что зеркала резонатора были наиболее деликатной частью разрабатываемого устройства, и пригласил его провести с ним свой академический отпуск. В их установке использовалась длинная трубка, в которой пары калия возбуждались электрическим разрядом (также как это делается в неоновых трубках рекламы). Резонатор был образован двумя зеркалами внутри трубки, на ее концах. Эти два зеркала должны были иметь высокое отражение. Оно получалось путем нанесения на стеклянную пластинку серии слоев подходящих материалов с помощью методики, в которой Хивенс был мастер. Сегодня мы можем объяснить неудачу того эксперимента тем, что эти покрытия разрушались бомбардировкой ионов газового разряда.

Шавлов в Bell Labs начал рассматривать рубин как возможный твердотельный материал, но в 1959 г. пришел к заключению, что энергетические уровни, позднее использованные Мейманом, не подходят, и таким образом упустил шанс построить один из самых популярных существующих лазеров, несмотря на то, что он правильно предсказал, что устройство твердотельного лазера может быть особенно простым. По существу, это мог быть просто стержень, один конец которого полностью отражает, а другой отражает почти полностью. Поверхность стержня остается без покрытий, чтобы пропускать излучение накачки.

ГЛАВА 12

УДАЧА (ИЛИ НЕУДАЧА?) ГОРДОНА ГОУЛДА

По мнению историков науки и техники, ошибочно связывать изобретение или научное открытие с отдельной личностью или точным моментом времени. Изобретение является процессом, который проходит отрезок времени и в котором, обычно, многие люди принимают существенное участие. Мы видели это на примере изобретения мазера и увидим еще больше в случае изобретения лазера. Действительно, Шавлов и Таунс не были одиноки в выяснении возможности распространить концепцию мазера в видимый и инфракрасный диапазоны, и в предсказаниях потенциальных применений оптического мазера.

Гордон Гоулд был студентом Колумбийского университета и обладал практичным и интуитивным менталитетом изобретателя. Он сосредоточивался исключительно на получении патента и не стремился распространить свои идеи в научной литературе и публиковать свои результаты традиционным образом в научных журналах. Вместо этого он сделал официальный запрос на серию патентов, что породило ряд судебных процессов, касающихся изобретения лазера и продолжавшихся несколько лет.

В возрасте 21 года Гоулд в 1941 г. получил степень бакалавра физики в Юнион Колледже, а в 1943 г. и степень магистра по оптической спектроскопии в Йельском университете. Там он научился использовать интерферометр Фабри—Перо. После военной службы он решил посвятить себя изобретательству и найти работу с неполным рабочим днем. Он начал с проектирования контактных линз и других вещей, включая попытки получить искусственный алмаз. Однако он решил, что для продолжения работ ему нужна более солидная научная основа. В 1949 г. он поступил в Колумбийский университет, где с 1951 г. стал работать над диссертацией под руководством профессора Поликарпа Куша. Диссертация была посвящена использованию атомного пучка таллия с целью изучения возбужденных энергетических уровней. Освещая атомы таллия светом подходящей лампы, он сперва возбуждал их на желаемый уровень, а затем исследовал, как они распадаются с этого состояния, т.е. какова эффективность заселения этого состояния и т.д. Но работа продвигалась очень медленно, даже к ноябрю 1957 г. Гоулд не написал диссертацию.

На самом деле он заинтересовался проектом построить оптический мазер, который он переименовал в лазер, заменив «m» в слове мазер, обозначающее микроволны, на «l», обозначающее свет. Когда первые лазеры были созданы, компании Bell Telephone не понравилось это название, и они отказались его использовать, предпочитая оптический мазер. Это не имело успеха, и устройство стало известным как лазер.

Эту историю можно восстановить на основе показаний, в ряде судебных процессов о приоритетах изобретения этого устройства, начиная с октября 1957 г., когда Гордон Гоулд, согласно его собственным заявлениям, рассматривал возможность использования устройства типа Фабри—Перо в качестве резонатора лазера. В один из дней ему домой позвонил Таунс. Его кабинет был рядом с кабинетом Гоулда, на десятом этаже здания физического факультета Колумбийского университета. Таунс хотел получить информацию об очень ярких таллиевых лампах, которые Гоулд использовал в своей диссертационной работе. Таунс зарегистрировал этот телефонный разговор в своей записной книжке. После этого разговора Гоулд пришел в возбуждение, и бросился заканчивать свои исследования как можно быстрее. В пятницу 16 ноября 1957 г. Гоулд и его жена, которая также работала в Колумбийском университете, пошли к владельцу кондитерской лавки (он был публичным нотариусом, приятелем жены Гоулда и его семьи). Там тот заверил своей печатью первые девять страниц лабораторного журнала Гоулда, которые содержали работу «Некоторые грубые расчеты возможности лазерного усиления света с помощью вынужденного испускания излучения».