Первый трансатлантический телеграфный кабель был введен в действие в 1858 г. Почти сто лет спустя, в 1956 г., был проложен первый телефонный кабель, получивший название ТАТ-1. В 1988 г. начало действовать первое поколение трансатлантических кабелей на оптических волокнах (их стали называть ТАТ-8). Они работают на длине волны 1,3 мкм и связывают Европу, Северную Америку и Восточную часть Тихого океана. В 1991 г. началось установление второго поколения волоконно-оптической связи, ТАТ-9, которая работает на 1,3 мкм и связывает США и Канаду с Великобританией, Францией и Испанией. Другая линия работает между США и Канадой и Японией.
В мире имеется ряд других волоконно-оптических линий. Для примера, оптическая подводная линия между Англией и Японией покрывает 27 300 км в Атлантическом океане, Средиземном море, Красном море, Индийском океане, в Тихом океане, и имеет 120 000 промежуточных усилителей на пару волокон. Для сравнения, первый трансатлантический телефонный кабель 1956 г. использовал 36 преобразователей, а первый оптический кабель, проложенный через Атлантический океан, использовал 80 000.
Сегодня, после 30 лет исследований, оптические волокна достигли своих физических пределов. Кварцевые волокна могут пропускать инфракрасные импульсы на длине волны 1,5 мкм с минимальными потерями 5% на километр. Нельзя уменьшить эти потери из-за физических законов распространения света (законы Максвелла) и фундаментальной природы стекла.
Однако имеется одно достижение, которое может радикально улучшить ситуацию. Это возможность непосредственно усиливать оптические сигналы в волокне, т.е. без необходимости сперва извлекать их из волокон. Путем добавления в материал волокна примесей подходящих элементов, например эрбия, и возбуждения их с помощью подходящего света накачки, пропускаемого через само волокно, можно получить инверсную населенность между двумя уровнями эрбия с переходом, который точно соответствует 1,5 мкм. В результате можно получить усиление импульса света на этой длине волны при его распространении через волокно. Кусок такого активного волокна помещается между двумя концами волокон, через которые распространяется сигнал. С помощью оптического ответвителя в этот кусок направляется и излучение накачки. На выходе остаток излучения накачки выходит наружу, а усиленный сигнал продолжает распространение в волокне. С помощью такого подхода можно исключить промежуточные электронные усилители. В старых системах электронных усилителей свет выходил из волокна, регистрировался фотоэлектрическим приемником, сигнал усиливался и преобразовывался в свет, который продолжал распространяться в следующей секции волокна.
Компакт-диски
Одним из самых популярных применений лазеров является их использование в системах записи и воспроизведения компакт-дисков (CD), которые ныне полностью заменили старомодные виниловые диски. Технология оптических дисков берет свое начало в исследовательских лабораториях фирмы Филипс (Нидерланды) в 1969 г. Параллельно исследования в этой области проводились фирмой Сони (Япония). После соглашения обе эти фирмы стали сотрудничать, и в 1982 г. компакт-диски вышли на рынок. В этой системе звуковая информация сначала записывается и преобразуется в серию импульсов, которые представляют первоначальный сигнал (т.е. сигнал оцифровывается). Затем эти импульсы переносятся на поверхность стеклянного диска с помощью сложной техники, использующей лазер, испускающий ультрафиолет. Этот лазер «записывает» последовательность импульсов в виде отверстий на поверхности диска. Каждое отверстие имеет микроскопические размеры с шириной около тысячной миллиметра (0,5 мкм) и глубиной 1000 А°. Таким образом, можно зарегистрировать большой объем информации на очень малой площади диска. Эту предварительную запись используют для изготовления матрицы, с помощью которой изготавливаются пластиковые копии для продажи. Для «считывания» записанной информации диск вращается, и считывание получается с использованием света GaAlAs-диодов, работающих на длине волны 780 нм. Свет диода направляется на диск и отражается той частью поверхности, где нет отверстий, а сами отверстия не отражают свет. Отраженный свет регистрируется подходящим приемником. Сигналы декодируются электроникой с преобразованием в звук (рис. 64). В настоящее время получают лучшие результаты с диодами, работающими в сине-зеленой области спектра. Уменьшение длины волны позволяет уменьшить размеры отверстий и тем самым записать большую информацию на той же площади диска.
Рис. 64. Схема системы считывания с оптического диска. Свет, излучаемый лазерным диодом, формируется в пучок, который направляется на диск с записанной информацией. Та же оптическая система собирает отраженный свет и посылает его на приемник
Разумеется, реальная система значительно сложнее, чем описано. Используются весьма искусные оптические системы, которые обеспечивают, что лазерный свет всегда нужным образом фокусируется на диск (положение фокуса изменяется не более 0,5 мкм), а диск вращается с постоянной скоростью. На диске также закодированы сигналы номеров содержания диска, продолжительность выбранного трека и всей записи. Эти сигналы служат для выбора желаемого куска информации на диске без необходимости прослушивать всю запись. Принципиальным преимуществом является то, что диск записывается и считывается световым пучком, без какого-либо механического контакта. Поэтому исключаются все царапины и повреждения, характерные для старых пластинок. Более того, можно записывать информацию с избытком, поэтому малые царапины и следы от пальцев часто не сказываются на работе. Разумеется, если грязь и пыль накапливается на диске, он может выйти из строя.
Оптические диски позволяют вообще сохранять огромное количество данных. Наиболее важным применением оптических дисков является т.н. CD-ROM (компакт-диск только для считывания памяти), которые обычны в компьютерах.
Медицинские применения
Применение в медицине — одно из интереснейших использований лазеров. Лазеры начинают широко использоваться в биологических исследованиях и в медицинской практике. Большинство применений основано на стандартном коммерчески доступном оборудовании.
Одним из первых применений лазеров стала офтальмология. Фотокоагуляция с потерей зрения, которая может произойти при наблюдении затмения, известна с античных времен. Платон предостерегал людей никогда не смотреть прямо на затмение, так как это могло привести к ослеплению. Это было забыто людьми, наблюдающими взрыв первой атомной бомбы, некоторых из которых были ослеплены вспышкой. В 1950-х гг., до появления лазера, коагуляторы сетчатки глаза использовали свет от ксеноновых дуговых ламп. Действие этого света на сетчатку было таким же, как и действие солнечного света. Одним из первых применений было восстановление отслоенной сетчатки. Врачи использовали ксеноновую лампу для выжигания, которое позволяло возвратить на место отслоенную сетчатку глаза. Естественным было использование лазера для улучшения этой процедуры, и это оказалось успешным!
Фотокоагуляция заключается в следующем. Лазерный свет превращается в тепло с возрастанием температуры приблизительно до 65°. Это повышение температуры приводит к денатурации белка с образованием коагулянта. Таким же способом можно также устранить ненормальные кровеносные сосуды, кисты, опухоли и другие ненормальности в глазу. Это может также обеспечить слипание отслоенной ретины и сосудистой оболочки.
Главной причиной потери зрения людей в возрасте от 20 до 64 лет является болезнь сосудов, в частности диабетная ретинопатия. Причиной потери зрения также является дегенерация роговицы, которая получается или при снижении эффективности сосудистой оболочки, или при чрезмерном увеличении кровеносных сосудов в центре ретины. Во многих случаях коагуляция этих сосудов может стабилизировать эти проблемы.