Реально это выглядит так: мы берем какую‑то самоочевидную аксиому — ну, любая аксиома самоочевидна — самоочевидное положение. Мы начинаем смотреть: можно ли куда‑то пойти из этого положения, можно ли непосредственно усмотреть какое‑то следствие из этой аксиомы. Вот, представим, что мы усмотрели непосредственно какой‑то вывод из той или иной аксиомы — посмотрели, сделали вывод, — первый шаг дедукции совершён. Этот вывод сохраняет свою интуитивную истинность и абсолютную, соответственно, необходимость. Смотрим теперь на следующую ситуацию: ищем в этом следствии каких‑то новых возможностей непосредственных импликаций. Нашли, сделали эти импликации. Интуитивность держится пока, не упускается. Потом опять… — каждый следующий шаг будет иметь интуитивную очевидность, а истинностная значимость всего ряда объясняется, обусловливается и базируется на истинности исходных положений.
— А как определить, что мы сделали неверный шаг? Сделав неверный шаг, мы приходим к какому‑то положению, которое считаем самоочевидным… Как этого избежать?
Понятно. Вопрос очень к месту. Но тут два, в действительности, вопроса: во — первых — вопрос о факте. Факт состоит в том, что мы действительно часто ошибаемся, утверждает Декарт, и мы можем считать, что мы совершили правильный выбор, даже вот непосредственно, а в действительности пропустили какое‑то звено или приняли за очевидность то, что таковым не является. Но, если рассматривать идеальную структуру дедукции, то такая ситуация невозможна по определению: если каждый новый шаг дедуктивный носит интуитивный характер, а интуитивно мы постигаем лишь то, противоположное чему невозможно, то ошибка просто невозможна. Интуиция — это как бы движение в одном направлении — здесь нет вариантов. То есть разные можно делать импликации, но каждая из этих импликаций (в своем отношении) в этом направлении является единственно возможным движением. Если какое‑то следствие имеет такую природу, что из этого (из этой аксиомы) можно вывести как это следствие, так и противоположное — то это вовсе не следствие из данной аксиомы. Если имеет место реальное следствие, то оно всегда однозначно в этом направлении, то есть ошибок быть не может в идеале. Но реально они возможны, из‑за, — Декарт говорит — слабости человеческого ума.
И дабы эту слабость как‑то компенсировать, он вводит четвертое правило — правило энумерации. Enumeratio, в переводе с латинского — «перечисление». Иногда это правило еще называют правилом индукции, имея ввиду здесь перечислительную индукцию — не путать с бэконовской индукцией. Вот это правило при внешней его неброскости имеет весьма существенный характер. Дело в том, что иногда декартовскую философию трактуют как такой, действительно узкий рационализм — вот поставил разум на столбовую дорогу, запустил механизм и он дальше сам будет ехать. Это не так. Так действует божественный разум, может быть, но никак не человеческий.
Самым таким понятным примером дедукции, кстати говоря, для Декарта являются арифметические вычисления с большими числами. Когда мы разлагаем проблему на несколько частей — когда мы считаем столбиком — действует второе правило. Каждое из проведенных действий теперь для нас обретает интуитивный характер. Допустим, 1257 сложить с 2636 не так просто, правда? Но если выписать это, разбить на отдельные действия, складывать придется уже числа в пределах одного десятка и здесь будет все интуитивно. А потом мы все это сгруппируем, тоже интуитивно, и получится правильный результат — теорема в данном случае. Имейте в виду, что для Декарта примером дедукции являются по преимуществу арифметические вычисления. Но даже здесь мы можем ошибаться, в счете мы же ошибаемся — бывает, бывает. А что ж уж говорить о более глубоких сложных философских дедукциях, если даже в таких бывают сбои.