Выбрать главу

Дальнейшее изложение Галилея показывает, что он рассуждает теоретически, и все его построение носит характер теоретического допущения, так называемого мысленного эксперимента, не могущего получить точного аналога в опыте, потому что никакой опыт и никакое измерение не могут иметь места там, где речь идет о бесконечно малой скорости. "...Нетрудно, - пишет Галилей, установить ту же истину путем простого рассуждения. Предположим, что мы имеем тяжелый камень, поддерживаемый в воздухе в состоянии покоя; лишенный опоры и отпущенный на свободу, он начнет падать вниз, причем движение его будет не равномерным, но сперва медленным, а затем ускоряющимся. А так как скорость может увеличиваться и уменьшаться до бесконечности (обратим внимание на это допущение Галилея, которое заведомо не может быть подтверждено в опыте. - П.Г.), то что может заставить меня признать, будто такое тело, выйдя из состояния бесконечной медленности (каковым именно является состояние покоя), сразу приобретает скорость в десять градусов скорее, чем в четыре, или в четыре градуса скорее, чем в два градуса, в один, в полградуса, в одну сотую градуса, словом, скорее, чем любую бесконечно малую скорость?"

Очевидно, что это - математическое допущение, основанное на принципе непрерывности, а вовсе не констатация физического явления. Как справедливо отмечает А.В. Ахутин, "для Галилея суть вопроса сводилась главным образом к созданию, конструированию, изобретению геометро-кинематической схемы механического события. Сама теоретическая работа развертывалась как открытие и наглядное обнаружение теоретических определений в процессе мысленного экспериментирования с этим идеально сконструированным объектом".

В свое время Э. Мах охарактеризовал приведенные выше эксперименты Галилея как мысленные, или воображаемые. Он приписывал им важную роль в формировании естествознания нового времени и видел в них обоснование своей эмпиристской интерпретации науки. В более ранний период развития науки мысленный эксперимент тоже имел место. Так, например, Аристотель осуществлял мысленный эксперимент, доказывая невозможность в природе пустоты. Однако в построении физики Аристотеля мысленный эксперимент играл иную роль, чем у Галилея. Аристотель прибегал к нему для того, чтобы отвергнуть какую-либо возможность: в этом смысле эксперимент играл у него негативную роль. Галилей же прибегает к воображаемому эксперименту для подтверждения своего допущения, как мы видели выше. Такое изменение значения мысленного эксперимента в физике связано у Галилея с перестройкой метода доказательства, со стремлением построить физику на базе математики.

Нельзя не отметить, что на протяжении XVII- XVIII вв. проблема мысленного эксперимента и его статуса неоднократно становилась темой дискуссий. Так, например, критикуя Декарта за то, что установленные им законы удара созданы априорно (на основе воображаемого эксперимента, а не реального опыта), Хр. Гюйгенс просто отождествлял мысленный эксперимент с теорией и не считал его достаточным для построения физики как науки о природе. На реальном, а не мысленном только эксперименте настаивал Ньютон в своей "Оптике" - вообще интерес Ньютона к химии, сблизивший его с такими виртуозами реального, а не мысленного эксперимента, как Р. Бойль, Р. Гук и др., свидетельствует о том, что Ньютон хорошо различал два типа экспериментов и умел работать как в манере Галилея и Декарта, так и в манере Бойля.

Таким образом, причина отмеченного нами "круга" в рассуждении Галилея ясна: его рассуждение о прохождении телом всех степеней медленности имеет чисто математический характер, но при этом Галилею нужно доказать, что между физическим движением и его математической моделью в предельном случае - а именно такой случай и являет нам конструируемый объект - нет никакого различия. Опыт, таким образом, заменяется математическим доказательством. В творчестве Галилея "экспериментально-технологический стиль мышления проявляется все-таки в основном не в форме реального, а в форме мысленного эксперимента", - пишут в этой связи В.С. Швырев и В.А. Шагеева.

Характерен и другой эксперимент Галилея: движение тел по наклонной плоскости. Вот как описывает Галилей этот эксперимент, с помощью которого устанавливается закон свободного падения тел: "Вдоль узкой стороны линейки или, лучше сказать, деревянной доски, длиною около двенадцати локтей, шириною пол-локтя и толщиною около трех дюймов, был прорезан канал, шириною немного больше одного дюйма. Канал этот был прорезан совершенно прямым и, чтобы сделать его достаточно гладким и скользким, оклеен внутри возможно ровным и полированным пергаментом; по этому каналу мы заставляли падать гладкий шарик из твердейшей бронзы совершенно правильной формы. Установив изготовленную таким образом доску, мы поднимали конец ее над горизонтальной плоскостью, когда на один, когда на два локтя и заставляли скользить шарик по каналу... отмечая способом, о котором речь будет идти ниже, время, необходимое для пробега им всего пути; повторяя много раз один и тот же опыт, чтобы точно определить время, мы не находили никакой разницы даже на одну десятую времени биения пульса. Точно установив это обстоятельство, мы заставляли шарик проходить лишь четвертую часть длины того же канала; измерив время его падения, мы всегда находили самым точным образом, что оно равняется половине того, которое наблюдалось в первом случае". Галилей, как видим, больше всего озабочен точностью измерения: он подчеркивает совершенную прямизну прорезанного канала, его предельную гладкость, позволяющую свести сопротивление до минимума, чтобы уподобить движение по наклонной плоскости его "парадигме" - качанию маятника. Но важнее всего Галилею точное измерение времени падения шарика, которое призвано подтвердить закон, установленный Галилеем математически и гласящий, что отношение пройденных путей равно отношению квадратов времени их прохождения. О "совершенной точности" обычно не говорил почитаемый Галилеем Архимед, хотя его приборы служили образцом для подражания в XVII в. В чем тут различие? Только ли в том, что Галилей был озабочен пропагандой своих идей, как в том убежден, например, П. Фейерабенд, а Архимед был выше этого? Видимо, дело не только в этом.

3. Маятник и перспектива

Койре верно замечает, что "мысль заменить свободное падение тел движением по наклонной плоскости является в самом деле признаком гениальности". Он не совсем прав, однако, когда приписывает эту мысль одному только Галилею. Ведь две наклонные плоскости, зеркально расположенные по отношению друг к другу, - это видоизмененный маятник; колебание шара по ним сходно с качанием шара, подвешенного на нити. Что же касается маятника, то эта идея, возможно, была подсказана Галилею его предшественником Дж. Бенедетти.

Характеризуя физические воззрения Бенедетти, Л. Ольшки пишет: "Бенедетти удержал аристотелевское понятие силы, т.е. телеологическое, качественное, но отнюдь не механическое ее толкование. Поэтому воззрения перипатетиков одушевляют эвклидовский скелет механики Бенедетти, как в системе Цезальпина и в идеях анатомов. Пока такие слова, как vis impressio, virtus potentia (сила, давление, мощность, потенциал), постоянно встречающиеся в механических рассуждениях математиков Возрождения, сохраняют двойной смысл или мистическое содержание, не может быть речи об обновлении основных понятий и методов мышления в области физики".

Действительно, Бенедетти был приверженцем физики импетуса, но называть содержание таких терминов, как "сила" или "давление", мистическим, как это делает Ольшки, представляется не совсем правильным. Не говоря уже о том, что и Галилей довольно долгое время пользовался теми же понятиями, что и Бенедетти, а элементы физики импетуса у него сохранились даже и в поздних сочинениях, такая характеристика не способствует пониманию исторической эволюции научных понятий, ибо в ее основе лежит упрощенное противопоставление научного и ненаучного: наука - это то, что возникло только в XVII в.

А между тем именно у Бенедетти с его "аристотелевским понятием силы" разрабатывались идеи, оказавшие громадное влияние на дальнейшее развитие математики и физики. Как раз исследования той самой "vis impressa", в которой Ольшки видит остатки "мистического содержания" аристотелевской физики, привели Бенедетти к снятию принципиальной противоположности между покоем и движением, поскольку изучение метательного движения побуждало его сконцентрировать внимание на интенсивности движения. Последнюю Бенедетти выявлял тем же путем, что и Галилей: он подчеркивал непрерывность движения, что означало возможность сохранения движения в бесконечно малые моменты времени. Отсюда у Бенедетти, во-первых, появляется тенденция к снятию различия между бесконечно медленным движением и покоем - тенденция, развитая впоследствии Галилеем; во-вторых, Бенедетти показывает, что Аристотель не прав, утверждая, что на ограниченной прямой непрерывное движение невозможно. Эти два момента между собой тесно связаны, и оба сыграли большую роль в становлении классической механики. И это понятно: ведь убеждение о том, что только круговое движение непрерывно, лежало в основе перипатетической физики и вытекало непосредственно из философских принципов Аристотеля. Всякое движение по прямой линии, с точки зрения Аристотеля, не может быть ни непрерывным, ни, следовательно, вечным, ибо прямая, как убежден Аристотель (и не только он один), не может продолжаться бесконечно (по Аристотелю, не может существовать бесконечно большого тела). Что же касается ограниченной прямой, то движение по ней не может быть непрерывным: дойдя до конца, тело должно повернуть обратно, в момент поворота оно неизбежно останавливается - в том смысле, что конечная точка движения в одном направлении становится начальной точкой движения в противоположном направлении и движение тем самым делает из одной точки две, - а в этом как раз и состоит "перерыв" непрерывного. Поэтому, по Аристотелю, непрерывное движение по прямой не может быть вечным. Вечным, потому что совершенным и непрерывным, движением является, по Аристотелю, движение небосвода вокруг Земли. Такое движение ближе всего к покою. "Именно круговое движение является единым и непрерывным, а не движение по прямой, так как по прямой определены и начало, и конец, и середина... так что есть место, откуда может начаться движение и где окончиться... в круговом же движении ничто не определено: почему та или иная точка будет границей на круговой линии? Ведь каждая точка одинаково и начало, и середина, и конец... Поэтому шар движется и в известном отношении покоится, так как он всегда занимает то же место. Причиной служит то, что все это вытекает из свойства центра: он является и началом, и серединой, и концом всей величины, так что вследствие его расположения вне окружности негде движущемуся телу успокоиться, как вполне прошедшему; оно все время движется вокруг середины, а не к определенному концу. А вследствие этого целое всегда пребывает в известного рода покое и в то же время непрерывно движется". Это представление о круговом движении как единственно непрерывном, а вместе с тем о круге как самой совершенной фигуре было настолько устойчивым, что сохранилось даже у Галилея, несмотря на то, что последний, в сущности, уже разрушил основы аристотелевской физики.