Выбрать главу

Источник-то кислорода возник, но Мир еще на протяжении полутора миллиардов лет оставался анаэробным: об этом свидетельствует наличие в соответствующих отложениях конгломератов из пирита (FeS2). Зачастую они представляют собой гальку с отчетливыми следами обработки ее течением – это, кстати, первое свидетельство существования на Земле пресных вод. Но текучие воды не могут не быть хорошо аэрироваными, и то, что столь легко окисляемое вещество, как пирит, осталось неокисленным, свидетельствует о практически бескислородной атмосфере. Сообщества фотоавтотрофов формируют в это время своеобразные кислородные оазисы (термин П. Клауда) в бескислородной пустыне; их возможностей хватает на создание окислительных обстановок (и осаждение железа в окисной форме) лишь в своем непосредственном окружении.

Ситуация радикально изменилась около 2 млрд лет назад, когда процесс гравитационной дифференциации недр (см. главу 3) привел к тому, что большая часть железа перешла в ядро планеты, и растворенное в морской воде закисное железо не могло уже возобновляться по мере выбывания из цикла. Фотоавтотрофы получили возможность завершить свою титаническую работу по окислению закисного железа и осаждению его в виде джеспиллитов; именно в это время возникли все крупнейшие месторождения железа, такие, как Курская магнитная аномалия. В дальнейшем руды этого типа уже не образовывались (за исключением очень краткого эпизода в самом конце докембрия – о чем речь пойдет в главе 6). Кислород, ранее полностью расходовавшийся на этот процесс, стал теперь мало-помалу насыщать атмосферу; с этого времени пиритовые конгломераты исчезли, а на смену донно-морским железным рудам пришли терригенные (т.е. имеющие наземное происхождение) красноцветы – т.е. процесс окисления железа начался и на суше (рисунок 16). Яркий образ для описания этих событий придумал Г.А.Заварзин: он назвал их временем, когда «биосфера „вывернулась наизнанку“ за счет появления кислородной атмосферы как продукта обмена цианобактерий, и вместо кислородных „карманов“ появились анаэробные „карманы“ в местах разложения органики».

Именно в это время (1,9 млрд лет назад) в канадской формации Ганфлинт впервые появляются звездчатые образования, полностью идентичные тем, что образует ныне облигатно-аэробная марганцевоосаждающая бактерия Metallogenium. Без кислорода окисление железа и марганца не идет, и образуемые этой бактерией металлические кристаллы в виде характерных «паучков» воникают только в сильно окислительной обстановке. Это должно означать, что в тот момент содержание кислорода в атмосфере уже достигло величины как минимум в 1% от современного (точка Пастера). Именно с этой пороговой концентрации становится «экономически оправданным» налаживание процесса кислородного дыхания, в ходе которого из каждой молекулы глюкозы можно будет получать 38 энергетических единиц (молекул АТФ) вместо двух, образующихся при бескислородном брожении. С другой стороны, в атмосфере начинает возникать озоновый слой, преграждающий путь смертоносному ультрафиолету, что ведет к колоссальному расширению спектра пригодных для жизни местообитаний. Примерно к середине протерозоя (1,7-1,8 млрд лет назад) «кислородная революция» в целом завершается, и Мир становится аэробным (рисунок 16). Впрочем, с точки зрения существ, составлявших тогдашнюю биосферу, этот процесс следовало бы назвать иначе: «Необратимое отравление кислородом атмосферы планеты». Смена анаэробных условий на аэробные не могла не вызвать катастрофических перемен в структуре тогдашних экосистем, и в действительности «кислородная революция» есть не что иное, как первый в истории Земли глобальный экологический кризис.

Во всех предыдущих построениях мы имели дело лишь с геохимическими следствиями тех процессов, что присходили на Земле при предполагаемом нами участии живых существ. Располагаем ли мы, однако, хоть какой-то информацией о самих этих существах? Можно ли их «пощупать пальцами»? Оказывается, можно. В последние десятилетия были разработаны специальные методы обработки осадочных горных пород, позволяющие выделять содержащиеся в них клеточные оболочки, а в некоторых случаях даже получать косвенную информацию о внутреннем строении этих клеток. К нынешнему моменту в докембрийских породах обнаружено множество одноклеточных организмов; древнейшие из них найдены в местонахождениях Варравуна (Австралия) – 3,5 и Онфервахт (Южная Африка) – 3,4 млрд. лет назад. Это оказались несколько видов цианобактерий («сине-зеленых водорослей»), ничем особенно не отличающихся от современных; мы уже упоминали о том, что из пород возраста 3,1 млрд. лет был выделен пигмент фикобилин, который используется при фотосинтезе современными цианобактериями (и никем кроме них).

Итак, в раннем докембрии существовал совершенно особый мир, формируемый прокариотными организмами – бактериями и цианобактериями. Разделение живых существ на прокариоты и эукариоты (эти термины были введены в 1925 г. Э. Шаттоном), основанное на наличии или отсутствии в их клетках оформленного ядра, теперь считают существенно более фундаментальным, чем, например, разделение на «животные» и «растения». Среди многих их различий для нас сейчас важнее всего то, что среди прокариот неизвестны многоклеточные организмы. Есть нитчатые и пальмеллоидные[11] формы цианобактерий, однако уровень интеграции клеток в этих стркутурах – это все-таки уровень колонии, а не организма. А поскольку времени на всякого рода эксперименты у прокариот, как мы видели, было более чем достаточно (как-никак, три с половиной миллиарда лет), то приходится предположить, что по каким-то причинам на прокариотной основе многоклеточность не возникает в принципе. Может быть, дело в отсутствии у них центриолей и митотического веретена, без которого невозможно точно ориентировать в пространстве делящиеся клетки и формировать из них сколь-нибудь сложные ансамбли. Может быть – в свойствах их клеточной оболочки, препятствующих межклеточным взаимодействиям; это делает невозможным обмен веществами, так что клетки, находящиеся внутри организма и не имеющие прямого контакта с окружающей средой (что неизбежно при многоклеточности), не могли бы питаться и выводить продукты распада. Может быть – в чем-то еще; как бы то ни было, такой путь повышения уровня организации, как многоклеточность, для прокариот оказался закрытым. Выход из этого тупика они нашли весьма оригинальный.

вернуться

11 В различных научно-популярных изданиях акул принято называть очень древней группой, чуть ли не «живыми ископаемыми». Это не совсем верно. Пластинчатожаберные хрящевые рыбы действительно известны начиная с карбона, однако те из них, кого называют «акулой» неспециалисты (крупный высокоскоростной хищник с телом гидродинамически совершенной формы – одним словом, персонаж фильма «Челюсти») вперыве появились в юре, а современные их семейства – лишь в мелу.