Таким образом, достижение живыми организмами макроскопических размеров может происходить различными способами, а истиная многоклеточность (многотканевость) – лишь один из них. В любом случае, многоклеточность (в широком смысле) почти наверняка возникала в процессе эволюции многократно и независимо: во многих типах водорослей – красных (Rhodophyta), зеленых (Chlorophyta), золотистых (Chrysophyta) – или высших грибов-аскомицетов (Ascomyceta) можно выявить преемственные ряды от одноклеточных форм через колонии (например, нитчатые формы) к макроскопическим организмам с аналогами тканевой дифференцировки.
РИСУНОК 19. Изменения во времени относительного обилия основных биотических компонентов: (а) – прокариоты-строматолитообразователи, (б) – свободноживущие прокариоты, (в) – эукариотный фитопланктон, (г) – многоклеточные растения, (д) – многоклеточные животные.
Эта гипотетическая эволюционная картина хорошо соответствует современным палеонтологическим даным (рисунок 19). Первые эукариоты появились (как мы помним из главы 5) около двух миллиардов лет назад среди фитопланктонных акритарх; вскоре к ним добавились и нитчатые формы с эукариотными параметрами клеток. Замечательно, что они никогда не встречаются в прокариотных бентосных сообществах (цианобактериальных матах), а с самого начала формируют свой собственный тип растительности, названный В.Шенборном (1987) «водорослевыми лугами». Ныне сообщества такого типа известны лишь в некоторых антарктических внутренних водоемах; в докембрии же они, судя по характеру осадков, были широко распространены в морях за пределами мелководий (которые были заняты матами).
К середине рифея (1,4-1,2 млрд лет) эти нитчатые эукариотные формы достигли значительного разнообразия. Именно тогда в составе «водорослевых лугов» появились и первые макроскопические водоросли с пластинчатым, корковым и кожистым типами слоевища, а к венду (650 млн лет) основным компонентом этих сообществ становятся вендотении – лентовидные водоросли длиной до 15 см. Есть даже сообщение о находке каких-то пластинчатых водорослей в китайской формации Чанчен с возрастом 1,8 млрд лет; эта датировка нуждается в подтверждении, но не кажется нереальной. Дело в том, что таксономическая принадлежность всех этих форм недостаточно ясна, однако некоторые из них очень сходны с низшими красными водорослями – бангиевыми. Красные же водоросли, как полагают многие исследователи, являются самой архаичной ветвью эукариот, и даже, возможно, произошли в результате «независимой эукариотизации» цианобактерий.
А вот животные, а также следы их жизнедеятельности (норки и следовые дорожки на поверхности осадка), достоверно появились в палеонтологической летописи лишь в конце протерозоя – около 800 млн лет назад. (Интересно, что водоросли с минерализованными слоевищами, для которых можно предполагать тот же уровень организации, что и у высших красных и бурых водорослей, появились еще позднее – в венде). В чем же причина того, что истиная многоклеточность возникла так поздно? В шестидесятые годы существовала (как мы помним из главы 5) гипотеза «кислородного контроля» Беркнера и Маршалла, согласно которой содержание кислорода в земной атмосфере вплоть до начала фанерозоя (540 млн лет назад) было ниже точки Пастера и не допускало существования более высокоорганизованных форм жизни, чем водоросли. Поскольку позже было установлено, что точка Пастера в действительности была пройдена гораздо раньше – более чем за миллиард лет до времени появления первых многоклеточных, причинная связь между этими явлениями была отвергнута, и о гипотезе «кислородного контроля» забыли. И, как выяснилось, напрасно.
Дело в том, что однопроцентный уровень содержания кислорода (имеется в виду 1% от его современного количества) – это тот критический минимум, ниже которого аэробный метаболизм принципиально невозможен; однако для жизнедеятельности макроскопических животных кислорода необходимо существенно больше. Б.Раннегар недавно провел специальные расчеты, из которых следует, что для животных, составлявших первую фауну многоклеточных – эдиакарскую (о ней речь пойдет впереди), уровень содержания кислорода должен был составлять не менее 6-10% от нынешнего – это в том случае, если они имели развитую систему циркуляции, доставлявшую кислород к тканям. Если же такая система у них еще не развилась и они дышали за счет прямой диффузии (а скорее всего именно так оно и было), то необходимое для их жизнедеятельности содержание кислорода должно было быть еще выше, может быть – сопоставимо с нынешним. Итак, гипотеза «кислородного контроля» кажется вполне логичным объяснением появления макроскопических животных лишь в конце протерозоя – если принять более высокий критический порог, чем однопроцентный, предлагавшийся Беркнером и Маршаллом. Возможна ли, однако, проверка этой гипотезы? Мы помним (из главы 5), что можно по составу осадков отличить аэробные обстановки от анаэробных, но вот как измерить количественные различия в содержании кислорода в былые эпохи?
Известно, что количество кислорода, создаваемого небиологическими процессами (фотолиз воды и т.д.), совершенно ничтожно; почти весь свободный кислород планеты создан фотосинтезирующими организмами. Однако живые существа не только производят кислород, но и потребляют его в процессе дыхания. В биосфере осуществляется достаточно простая химическая реакция: n СО2 + n H2O ( (CH2O)n + n О2. «Читая» ее слева направо, мы получаем фотосинтез, а справа налево – дыхание (а также горение и гниение). Уровень содержания кислорода на планете стабилен потому, что прямая и обратная реакции взаимно уравновешиваются; так что если мы попытаемся увеличить содержание свободного кислорода в атмосфере путем простого наращивания объема фотосинтезирующего вещества, то из этой затеи ничего не выйдет. Сместить химическое равновесие, как вам должно быть известно из курса химии, можно, лишь выводя из сферы реакции один из ее продуктов. В нашем случае – добиться увеличения выхода О2 можно, лишь необратимо изымая из нее восстановленный углерод в форме (CH2O)n или его производных.