Выбрать главу

Такая температура и давление инициируют новый феномен, называемый ядерным синтезом. В этих экстремальных условиях ядра двух атомов водорода (каждое из них содержит по одному протону) сталкиваются с такой силой, что ядра сливаются и один из протонов превращается в нейтрон – образуется тяжелый атом водорода. После ряда таких столкновений образуются ядра гелия с двумя протонами. Поразительно, что получившийся в результате атом гелия примерно на 1 % легче исходных четырех атомов водорода, из которых он образовался. По мере обогащения звезды гелием за счет водорода она «воспламеняется», излучая энергию в окружающее пространство.

Крупные звезды, многие из которых гораздо больше нашего Солнца, с течением времени исчерпывают громадные запасы водорода, содержащегося в их ядрах. Однако чрезвычайно высокое внутреннее давление и тепловая энергия продолжают поддерживать ядерный синтез. Атомы гелия в звездном ядре превращаются в углерод – необходимый элемент для возникновения жизни, состоящий из шести протонов, и одновременно продолжаются всплески ядерной энергии, вызывающие водородный синтез в сферическом слое, окружающем ядро звезды. Затем из углерода синтезируется неон, из которого рождается кислород, затем формируется магний, потом кремний, сера и т. д. Постепенно звезда приобретает структуру луковицы, в которой ядерный синтез образует один за другим слои из различных элементов. Ядерный синтез все ускоряется до тех пор, пока не наступает фаза образования железа, которая длится не более одного дня. К этому времени, много миллионов лет спустя после Большого взрыва, во многих звездах в процессе ядерного синтеза завершается цикл формирования первых 26 элементов периодической системы.

Железо является предельным элементом ядерного синтеза. Когда водород превращается в гелий, гелий в углерод и происходят все дальнейшие преобразования, высвобождается огромное количество ядерной энергии. Но ядро атома железа содержит наименьшее количество энергии по сравнению c ядрами других элементов. Когда огонь пожирает все топливо, превращая его в золу, тепловая энергия иссякает. Железо представляет собой своего рода ядерную золу; при столкновении атома железа с атомами других элементов ядерная энергия не возникает. Таким образом, когда в массивной звезде неизбежно формируется железное ядро, ее жизненный цикл заканчивается и происходит катастрофа. До этого момента в звезде поддерживается устойчивое равновесие между двумя мощными силами: гравитацией, притягивающей массу звездного вещества к центру, и давлением газа, выталкивающим эту массу из ядра. Когда ядро заполняется железом, процесс выталкивания массы из ядра останавливается, и победившая сила гравитации в один миг порождает катастрофу. Вся масса звезды настолько стремительно обрушивается к центру ядра, что отскок вызывает взрыв, который называют вспышкой сверхновой звезды. Звезда распадается, выбрасывая большую часть своего вещества в космическое пространство.

Рождение химии

Для тех читателей, которые пытаются представить себе устройство космоса, рождение сверхновой звезды ничуть не хуже Большого взрыва. Разумеется, Большой взрыв ведет к образованию атомов водорода, которые, в свою очередь, неизбежно приводят к образованию первых звезд. Однако путь от звезды до знакомого нам мира далеко не так очевиден. Огромный шар, состоящий из атомов водорода, даже если в его ядре скапливаются более тяжелые элементы вплоть до железа, еще не указывает верного направления пути.

Но когда взрываются большие звезды, в космосе появляется нечто новое. Распавшиеся небесные тела усеивают космическое пространство всеми элементами, из которых они состояли. Углерод, кислород, азот, фосфор и сера – основные ингредиенты живой материи – появляются в изобилии. Магний, кремний, железо, алюминий и кальций, входящие в состав горных пород, из которых преимущественно и состоят планеты типа Земли, тоже имеются в достаточном количестве. Но в невообразимом поле энергии, порождаемом взрывающимися звездами, все эти элементы в процессе ядерного синтеза создают самые невероятные комбинации – в результате формируется вся Периодическая таблица, т. е. первичные 26 элементов образуют множество других. Именно тогда рождаются такие редкие элементы, как драгоценные металлы – серебро и золото, утилитарные вещества медь и цинк, ядовитые мышьяк и ртуть, радиоактивные уран и плутоний. Более того, эти элементы в космическом пространстве соединяются и взаимодействуют друг с другом во все новых и новых химических реакциях.