Распределение скоростей сейсмических волн по глубинам в мантии и ядре Земли показано на рис. 11. Распределение по глубинам давления и плотности по модели «Земля-2» В. Н. Жаркова, В. П. Трубицына и П. В. Самсоненко (а также температуры по ориентировочным данным) приведено в табл. 3.
Табл. 3. Давление, плотность и температура в недрах Земли.
Давление должно меняться с глубиной непрерывно, а плотность (и некоторые другие характеристики состояния вещества, такие как модули сжатия и сдвига и скорости распространения сейсмических волн; см., например, рис. 11) может испытывать и скачкообразные изменения - главный такой скачок происходит при переходе из нижней мантии во внешний слой ядра, где плотность возрастает почти вдвое.
Рис. 11. Распределение скоростей сейсмических волн P и S (в условных единицах) по глубинам в мантии и в ядре Земли по Б. Гутенбергу.
Еще в конце прошлого века высказывалось предположение, что земное ядро состоит из железо-никелевого сплава («нифе»), как железные метеориты (содержащие 89.1% Fe, 7.2% Ni и 3.7% FeS). Заметим, что для обеспечения измеренных астрономами средних плотностей вещества Меркурия, Венеры, Марса и Луны при условии наличия у них железных ядер надо отказаться от привлекательной космогонической гипотезы об одинаковом химическом составе планет земной группы (конкретно - об одинаковом содержании в них железа). Чтобы сохранить эту гипотезу, В. Н. Лодочников и затем В. Рамзей предположили, что ядра планет земной группы состоят, как и их мантии, из силикатов, но в особо плотном металлизированном состоянии. Однако детальные расчеты показали, что и при предположении металлизации силикатов гипотезу об одинаковом химическом составе этих планет сохранить не удается.
Более того, некоторые теоретические расчеты, также опыты группы Л. В. Альтшулера по ударному сжатию ряда веществ не подтвердили гипотезы, металлизации силикатов при физических условиях, свойственных ядрам планет земной группы; наоборот, эти опыты дали свидетельства в пользу высокого содержания железа в земном ядре (хотелось бы, чтобы эти результаты были подтверждены еще измерениями не в ударных, а в стационарных условиях). Правда, оказалось, что плотность железа и тем более железо-никелевого сплава немного больше, а скорость ср в них заметно меньше, чем нужно для земного ядра. Поэтому в железное ядро надо добавить более легкие химические элементы. Перебрав самые подходящие из них (О, S, Si, Аl), О. Г. Сорохтин [10] признал наиболее вероятным кислород и подобрал по плотности внешнего слоя ядра его химический состав - Fe2O, совместимый со структурой электронных оболочек железа при соответствующих давлениях.
Таким образом, Земля представляет собой сложную механическую систему - вращающийся толстостенный шар (мантия) с внутренней полостью, заполненной жидкостью (слой Е), в которой плавает небольшое шарообразное твердое ядро G, удерживаемое в центре системы Силами Ньютоновского тяготения и могущее вращаться иначе, чем мантия (см. работу автора [11]).
И внешний слой, и внутренняя часть ядра обладают большой электропроводностью (для их электрического сопротивления обычно принимают значение 0.0003 ом·см). Поэтому движения жидкости во внешнем слое и вращение внутренней части ядра суть движения проводников в геомагнитном поле. По законам физики эти движения должны порождать электрические токи. Магнитное поле этих токов может прибавляться к начальному полю и усиливать его. Согласно современным воззрениям, именно этот динамо-механизм, возможный благодаря наличию жидкого внешнего ядра, создает геомагнитное поле (см., например, главу 10 книги 19]). К обсуждению этого вопроса мы еще вернемся в главе 9.
Более детальные сведения о внутреннем строении Земли читатели найдут в книге В. А. Магницкого [2].
ЧАСТЬ II: ОБЩАЯ ИСТОРИЯ
ГЛАВА 3: ЕСТЕСТВЕННАЯ ПЕРИОДИЗАЦИЯ ИСТОРИИ ЗЕМЛИ
Возрасты изверженных пород. Тектоно-магматические эпохи. Основная геохронологическая схема: катархей, архей, афебий, рифей, фанерозой. Основные этапы формирования земной коры.