В табл. 6 не указано, каким временам соответствуют различные доли х отдифференцировавшегося «ядерного» вещества; известно лишь, что х=0 соответствует моменту образования Земли, от которого следует отсчитывать время эволюции t, а x=86.3% соответствует настоящему моменту, т. е. t=4.6 млрд. лет. Использование ж вместо t сильно упростило расчет табл. 6 и сделало его более надежным. Однако теперь нам желательно иметь хотя бы приближенную оценку зависимости х от i.
Для этой цели О. Г. Сорохтин [10] предложил считать, что отделение «ядерного» вещества от «мантийного» происходит только на поверхности ядра, т. е. является поверхностной реакцией, скорость которой (скорость роста массы ядра, пропорциональная скорости роста величины х) пропорциональна поверхности ядра и концентрации «ядерного» вещества в мантии. Считая, например, коэффициент пропорциональности постоянным (не зависящим от времени), с помощью этих предпосылок нетрудно рассчитать зависимость х от t. Результаты такого расчета приведены на рис. 12. Они показывают, что масса ядра сначала росла медленно, но этот рост ускорялся. Наибольшая скорость роста была достигнута 1.4 млрд. лет тому назад, во время Готской тектоно-магматической эпохи. После этого рост ядра стал замедляться. Через 1.5 млрд. лет ядро достигнет 99% своей максимально возможной массы.
Рис. 12. Масса ядра x(1) и скорость ее роста х(2) в различные моменты времени t.
Другим важным энергетическим источником внутри Земли является тепло, выделяющееся при распаде радиоактивных элементов. Мощность этого источника оценить гораздо труднее, так как каких-либо прямых данных о концентрациях радиоактивных веществ в недрах Земли мы не имеем. Наибольшее внимание здесь следует уделить долгоживущим, т. е. имеющим большие периоды полураспада, радиоактивным изотопам U288, U235, Th232 и К40, о которых мы уже говорили выше при обсуждении изотопных методов определения абсолютного возраста минералов в горных породах.
Они относятся к литофильным химическим элементам, имеющим сродство с силикатами (т. е. способным замещать атомы в кристаллических решетках силикатов - легче всего в решетках с наименее плотной упаковкой атомов). Поэтому при дифференциации веществ внутри Земли эти изотопы должны накапливаться там, где образуются наибольшие концентрации силикатов (т. е. кремнекислоты SiO2), меньше всего их должно быть в ядре, лишь очень немного - в плотных ультраосновных породах мантии и больше всего- в сиале коры, особенно в кислых породах. И действительно, установлено возрастание концентрации урана, во-первых, от ультраосновных пород земной коры к основным и кислым (см. с. 8, 9) и, во-вторых, от более плотных минералов к менее плотным (оливин < ортопироксен < клинопироксен < шпинель < гранат).
Исходя из сведений о содержании радиоактивных изотопов в расплавах и кристаллах мантийного вещества, А. Масуда (1965 г.) получил следующие оценки мощности соответствующего тепловыделения в различных слоях современной Земли:
Глубины, км
Удельная мощность тепловыделения, эрг/г ·год
0-37
50
37-103
7
103-500
0.8
500-1700
0.3
1700-2900
0.2
Поскольку радиоактивные вещества со временем распадаются, раньше их было больше, чем теперь (и они, вероятно, сначала были распределены внутри Земли равномерно). Следовательно, они генерировали больше тепла (по имеющимся оценкам, в момент образования Земли - в 4-7 раз больше, чем сейчас). По оценке Е. А. Любимовой [5], за все время существования Земли долгоживущие радиоактивные изотопы выделили 0.9 ⋅ 1038 эрг тепла, что составляет около половины нашей оценки потенциальной энергии, освободившейся при гравитационной дифференциации. Впрочем, мы вынуждены подчеркнуть значительную неопределенность в оценках мощности радиогенного тепловыделения.
Другие энергетические источники внутри Земли, кроме освобождения потенциальной гравитационной энергии и тепловыделения долгоживущих радиоактивных изотопов, имеют, по-видимому, гораздо меньшее значение. Так, например, в природе обнаружены в больших количествах по сравнению с нормой космической распространенности продукты распада 27 короткоживущих радиоактивных изотопов (Al26, Be10, Np237, Fe60, Cl36 и др.), имеющих периоды полураспада меньше, чем сотни миллионов лет. Их тепловыделение могло быть существенным лишь в первые 100-200 млн. лет формирования зародыша Земли из «планетезималей», но это тепло быстро излучалось в космос, как это свойственно небольшим нагретым телам. Выделение тепла внутри Земли вследствие торможения ее вращения приливным трением в настоящее время много энергии дать не может, так как полная кинетическая энергия вращения Земли сейчас составляет всего 2.16 · 1036 эрг. Раньше, когда Земля вращалась быстрее, а приливы были сильнее (так как Луна была ближе), тепловыделение из-за приливного трения было больше, чем теперь, но все же, согласно имеющимся оценкам, его доля в общем тепловыделении внутри Земли за все время ее существования невелика.