Выбрать главу

Таким образом, приходится признать, что на Венере не было и нет ни гидросферы, ни жизни земного типа, так что ни гидратации мантийных гипербазитов, ни химического, ни биологического карбонатообразования там не происходило. Поэтому весь углерод, на Земле перешедший (преимущественно биологическим путем) в карбонаты, сланцы, глины, угли и нефти коры (где количество CO2 в одних только карбонатах А. Б. Ронов и А. А. Ярошевский [32] оценивают в 3.7·106 триллионов т, в 70 раз больше массы атмосферы), на Венере остался в атмосфере.

Сложнее объяснить, куда девалась на Венере вода. Если на Земле испарить всю воду, то она образовала бы атмосферу из водяного пара вчетверо массивнее нынешней венерианской. Молекулы воды в венерианской атмосфере, по-видимому, распадались под действием более интенсивных, чем на Земле, жестких излучений Солнца и, кроме того, заряженных частиц, на Земле отражаемых магнитным полем (а по О. Г. Сорохтину [23], -также по реакции термолиза ЗFе+4Н2О → Fe3O4+H2 при наличии свободного железа на горячей поверхности Венеры). Водород уходил в космическое пространство, а кислород, составляющий 8/9 массы воды, затрачивался на окисление СН4, СО и других атмосферных газов, свободного железа и закисей Fe и других металлов в породах горячей венерианской коры (такие процессы происходили и происходят и на более холодной Земле, но соответствующая убыль кислорода в ее атмосфере теперь компенсируется быстрым продуцированием О2 при фотосинтезе растений). Если для грубой прикидки принять, что первичные базальты венерианской коры содержали порядка 10% закиси железа FeO, то для ее окисления до Fe2O3 в коре массой 5·107 триллионов т потребовалось бы порядка 5·105 триллионов т кислорода, и его заимствование из атмосферы уменьшило бы давление газа у поверхности Венеры примерно на 90 атм. Эта оценка показывает, что количественное объяснение исчезновения кислорода из венерианской атмосферы может быть дано при дополнительном учете свободного железа и других способных окисляться веществ в венерианской коре.

ГЛАВА 6: ЭВОЛЮЦИЯ ЗЕМНОЙ КОРЫ

Осадочные породы и скорость их образования. Пододвигание океанической коры под континенты в зонах Заварицкого-Беньофа. Образование океанической коры в рифтовых зонах. Изверженные породы. Образование континентальной коры над зонами Заварицкого-Беньофа. Метаморфические породы, гранитизация. Геохимическая эволюция земной коры. История руд

Земная кора состоит из осадочных, изверженных и метаморфических пород. Обсуждение их эволюции удобнее всего начать с осадочных пород, образование которых в океанах в настоящее время доступно непосредственному наблюдению (обширная сводка материалов об осадкообразовании в океанах содержится в недавно вышедшей фундаментальной книге А. П. Лисицына [33]).

Скорости океанического осадкообразования оцениваются по возрастам различных слоев в колонках донных осадков, получаемых при помощи грунтовых трубок, и в кернах, извлекаемых при бурении океанского дна.

Относительные возрасты слоев определяются палеонтологическим методом по видам организмов с известковыми раковинками - корненожек фораминифер и кокколитовых водорослей, а также организмов с кремнеземными раковинками - диатомовых водорослей и одноклеточных животных радиолярий, анализируются и попавшие в осадок пыльца и споры наземных растений. Слои разного возраста различаются также по характеру их намагниченности, на чем основаны методы палеомагнитной стратиграфии, к которым мы вернемся в главе 9.

Абсолютные возрасты слоев осадков определяются изотопными методами - по содержанию в них радиоактивного изотопа углерода С14 (возрасты до 50-60 тыс. лет); ионий-протактиниевым методом по изотопному отношению I230/Ра231, а также радиево-иониевым, ионий-ториевым и протактиний-ториевым методами (возрасты до 200 тыс. лет); по содержанию радиоактивных висмута (Bi214), алюминия (Al26) и бериллия (Be10) (возрасты до 0.3, 3 и 10 млн. лет); калий-аргоновым методом.

Полученные указанными методами оценки скоростей осадкообразования, а также карты типов осадков показывают, что в осадкообразовании проявляется широтная, циркумконтинентальная и вертикальная зональность. В зонах срединно-океанических хребтов осадки встречаются лишь в разрозненных «карманах». Наименьшие скорости осадкообразования - меньше 1 мм за 1000 лет, а местами даже меньше 0.1 мм за 1000 лет - наблюдаются в глубоких центральных котловинах океанов; осадки там имеют вид тонких слоев плотных красных глин. На большей части площадей Тихого и Индийского океанов осадконакопление происходит со скоростями 3-10 мм/1000 лет, причем образуются преимущественно карбонатные осадки. В высокоширотных и экваториальной зонах Тихого и Индийского океанов и на большей части площади Атлантического океана (в котором осадкообразование вообще происходит в несколько раз интенсивнее, чем в Тихом) скорость осадкообразования увеличивается до 10-30 мм/1000 лет, а ближе к берегам - до 30-100 мм/1000 лет, в краевых морях - до 100-500 мм/1000 лет, а напротив устьев больших и мутных рек - до тысяч и даже десятков тысяч миллиметров за 1000 лет. Средняя по всей площади океанов скорость осадконакопления получается порядка десятков миллиметров за 1000 лет.