Выбрать главу

Ротман продолжал изучать белки, участвующие в процессе стыковки везикул с мембранами — «докинга». В ткани мозга, в синапсах — областях контакта между нейронами — еще раньше было обнаружено три белка с неизвестными функциями. Оказалось, один из них находится на поверхности везикул, а два других — в клеточных мембранах. Ученый выдвинул гипотезу: при клеточной транспортировке соответствующие белки везикул и мембран, которые для них являются мишенями, должны подходить друг другу как две половинки застежки-молнии. Они взаимодействуют между собой по принципу ключ — замок. Сейчас эти вещи настолько вошли в плоть и кровь науки, что многие воспринимают их как нечто само собой разумеющееся. Однако тогда, чтобы доказать свою гипотезу, Джеймсу Ротману пришлось воспроизвести этот процесс в пробирке. Выяснилось, что он был прав — везикулы действительно взаимодействовали с мембранами. Так стало ясно, каким образом клеточные «грузовики» находят мембранные мишени. Поскольку вариантов таких белков много и они взаимодействуют друг с другом только в специфических комбинациях, служба доставки работает безошибочно. Ученые выяснили, что этот механизм действует и внутри клетки, и когда везикула направляется к внешней мембране, чтобы выпустить наружу свое содержимое. 

По звонку

Третьим ученым, которому присудили премию по медицине и физиологии этого года, стал уроженец Германии Томас Зюдхоф. Сейчас он работает в США, в престижном Стэнфорде. Когда в 80-е годы он приступил к изучению везикул, основные открытия Ротмана и Шекмана были уже сделаны. Зюдхоф был нейробиологом и изучал передачу сигналов между нейронами. «К тому моменту в целом было ясно, что при этом происходит. Здесь работает тот же самый механизм транспорта веществ в клетках. В синапс — промежуток между мембранами нейронов всего в 30—50 нанометров — впрыскивается содержимое так называемых синаптических везикул, находящихся внутри окончаний нерва: они хорошо видны в электронный микроскоп, — рассказывает Лев Магазанник. — Из них выходит нейротрансмиттер — биологически активное химическое вещество, посредством которого осуществляется передача сигнала от одной нервной клетки к другой». Однако перед учеными оставалась неразрешимая проблема. Нейротрансмиттер должен выделиться из синаптических везикул и появиться в синаптической щели за считаные миллисекунды. Что обеспечивает такую скорость? «Нужно было получить ответ на вопрос: как работает белковый механизм, обеспечивающий слияние мембран пузырька и нервной клетки в месте высвобождения нейротрансмиттера, — говорит Магазанник. — Высказывалось много предположений. Некоторые, например, считали, что происходит взаимодействие по принципу kiss and run — «поцеловал и беги». Однако Зюдхоф доказал, что здесь действует иной физический механизм». Было известно, что этот процесс как-то связан с колебаниями концентрации кальция в цитоплазме клетки. Поэтому ученый решил проверить, как кальций влияет на высвобождение нейротрансмиттера в нейронах. Используя генномодифицированных лабораторных мышей, ему удалось найти два белка, реагирующих на концентрацию кальция. Один из них ограничивал взаимодействие везикулы с клеточной мембраной, другой быстро запускал этот процесс. Кроме того, Зюдхоф нашел еще один белок — Munc18-1, роль которого в передаче сигналов между нейронами была решающей. Лабораторные мыши с выключенным геном, кодирующим этот белок, вообще не выделяли нейротрансмиттер. Так пазлы картинки совпали, и была разгадана еще одна загадка, связанная с древней транспортной системой клетки.