ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ по дисциплине
информационные технологии в юридической деятельности:
Раскрыть содержание понятия «правовая информация». Дать общую классификацию правовой информации.
Раскрыть содержание понятия «электронная цифровая подпись (ЭЦП)». Сформулировать общие юридические функции электронной цифровой подписи (ЭЦП). Перечислить отличия и сходства электронной цифровой подписи (ЭЦП) и собственноручной подписи.
}Вопрос 1}
}Раскрыть содержание понятий информационные технологии и структуру основных информационных процессов
Информационные технологии – система приёмов, способов, методов осуществления информационных процессов.
Информационная технология (ИТ) – это упорядоченная совокупность методов переработки, изменения состояния, свойств и качественной формы проявления информации, а также методов тиражирования, распространения, хранения и использования информации в процессе целенаправленной общественно-производственной деятельности.
Информационные процессы – процессы восприятия, накопления, обработки и передачи информации.
Структура информационного процесса
Проявляется информация всегда в материально – энергетической форме, в частности в виде сигналов. В информационном процессе он выполняет функцию переносчика информации от источника к приемнику и далее к адресату.
Процесс передачи информации – многоступенчатый. Сигнал может на каждом из промежуточных этапов менять свою физическую природу.
Собственно информационный процесс начинается с восприятия и фиксации информации, содержащиеся в том или ином источнике. Информация отделяется от шумов. Завершается процесс формированием сигнала, с помощью которого информация передаётся.
Приём информации – вторичное её восприятие другим субъектом или принимающим устройством.
Обработка информации осуществляется человеком или техническим устройством, в частности компьютером.
Завершается информационный процесс представлением информации потребителю, т.е. демонстрацией на индикаторах различного вида изображения и принятием решения.
Особая стадия информационного процесса – хранение информации. Она занимает промежуточное положение между другими стадиями и может реализовываться на любом этапе информационного процесса.
Информационные процессы отличаются по степени сложности. ( простой- копирование, сложный – управление)
}Вопрос 2}
}2.Изложить толкование термина информация в философии, в кибернетике, в повседневной практике, в сфере юриспруденции.
Информация в философии – отражение объективной реальности в субъективном сознании. ( познание, взаимодействие)
Обыденное понимание информации – сведения, знания, сообщения, которые человек получает из окружающей среды с помощью органов чувств.
Правовое (юриспруденция)) определение понятия «информация» дано в федеральном законе от 27 июля 2006 года № 149-ФЗ «Об информации, информационных технологиях и о защите информации» (Статья 2): «информация -- сведения (сообщения, данные) независимо от формы их представления».
Информация, с точки зрения кибернетики, – обозначение содержания, полученного из внешнего мира в процессе нашего приспособления к нему и приспособления к нему наших чувств. Процесс получения и использования информации является процессом нашего приспособления к случайностям внешней среды и нашей жизнедеятельности в этой среде.
Кибернетика – наука, которая изучает общие принципы и методы управления сложными системами в природе, технике, обществе.
}Вопрос 3
}Охарактеризовать формы представления информации.
Информация – содержание сообщения, сигнала, памяти.
Информация – сведения, которые снимают неопределённость, существовавшую до их получения.
Формы
Непрерывная – характеризует непрерывные величины(длина, ширина, вес, расстояние, плотность, масса)
Дискретная – величины, характеризующиеся числом, количеством предметов или информацией ( 10Мб, 3книги, 15 шагов)
}Вопрос 4}
}Пояснить причину вероятностного характера процессов в системах коммуникации, смысл терминов энтропия и количество информации.
Существование неопределённости связано с участием вероятностей в осуществлении событий. Устранение неопределённости есть увеличение вероятности наступления того, что задано как цель.
Энтропия (от греч. entropia - поворот, превращение) - мера неупорядоченности больших систем. Впервые понятие "энтропия" введено в XIX в. в результате анализа работы тепловых машин, где энтропия характеризует ту часть энергии, которая рассеивается в пространстве, не совершая полезной работы (отсюда определение: энтропия - мера обесценивания энергии). В теории информации энтропия- мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы.
Информационная энтропия – мера хаотичности информации, неопределённость появления какого- либо символа из алфавита.
Понятие информации (informatio - разъяснение, осведомление, изложение). Информация - это некоторая последовательность (налицо упорядоченность) сведений, знаний, которые актуализируемы (получаемы, передаваемы, преобразуемы, сжимаемы или регистрируемы) с помощью некоторых знаков (символьного, образного, жестового, звукового, сенсомоторного типа). Количество информации - числовая величина, адекватно характеризующая актуализируемую информацию по разнообразию, сложности, структурированности, определённости, выбору (вероятности) состояний отображаемой системы.
}Вопрос 5}
}Элементы комбинаторики. Правила умножения и сложения.
Комбинато́рика (Комбинаторный анализ) — раздел , изучающий дискретные объекты, (, , и элементов) и отношения на них (например, ). Комбинаторика связана со многими другими областями — , , и имеет широкий спектр применения в различных областях знаний (например в , , ).
Термин «комбинаторика» был введён в математический обиход , который в опубликовал свой труд «Рассуждения о комбинаторном искусстве».
Сформулируем несколько простых и очевидных правил комбинаторики.
Правило сложения
Пусть в множестве А имеется m элементов, а в множестве В – n элементов. Если у множеств А и В нет общих элементов, то в их объединении число элементов равно
Можно сказать так, что если в двух мешках лежат разные предметы, и мы ссыпаем их вместе, то, чтобы найти их общее количество, надо сложить количества предметов в каждом из мешков.
Если для конечного множества Х мы через |Х| обозначим количество его элементов, то правило сложения можно записать так:
Если то
Это правило несложно обобщается на случай, когда у множеств А и В есть общая часть.