Выбрать главу

Современный Абуль-Вафе тмутараканский график из трех вписанных прямоугольников позволяет с очень большой степенью точности (хотя и не всегда теоретически верно) почти моментально решать все подобные задачи, включая и «квадратуру круга».

Рассмотрим несколько примеров, взяв за основу квадрат, сторона которого равна длинной стороне внешнего прямоугольника «вавилона» (А).

1. Удвоение квадрата, (рис. 20):

Рис. 20. Приближенное решение квадратуры круга и других задач на равновеликость с помощью «вавилона».

Сторона удвоенного квадрата равна удвоенной боковой стороне «вавилона» (т. е. 2АВ или 2ДЖ).

2. Построение двух равных квадратов, сумма площадей которых равна площади основного квадрата:

Сторона каждого малого квадрата равна АВ или ДЖ.

3. Построение трех квадратов на тех же условиях:

Удвоенная линия БЛ (или три другие, ей соответствующие — БИ, ЕН, ЕП) является стороной искомого квадрата.

4. Построение равностороннего треугольника, равновеликого квадрату: сторона треугольника равна удвоенной линии АЧ. Высота его будет равна удвоенной линии ТН.

5. Построение правильного шестиугольника, равновеликого квадрату:

Стороной шестиугольника будет больший отрезок стороны квадрата, разделенной в «золотом сечении», т. е. линия АЛ.

6. Построение квадрата, равновеликого кругу («квадратура круга»).

Примем диаметр окружности равным большой стороне «вавилона». Сторона искомого квадрата будет равна сумме боковой стороны «вавилона» и линии ГФ (поперечной линии, соединяющей длинные стороны всех трех прямоугольников). Погрешность здесь будет очень невелика и практически почти неощутима — 0,0023 диаметра; ошибки в задачах 3 и 5 тоже очень малы и не превышают 0,005-0,003. Наименее точно решение задачи 4 (ошибка равна 0,08). Задачи 1, 2 решаются точно.

Как видим, для средневековых практиков, осужденных Абуль-Вафой, все подобные задачи решались поразительно просто — располагая «вавилоном» в определенную меру (например, с большой стороной в «локоть»), мастера и архитекторы должны были только знать, который из 42 размеров этого графика нужно взять в качестве стороны искомой фигуры.

Зная свойства «вавилона», можно было быстро, не производя ни расчетов, ни геометрических построений, сразу же разделить локоть в отношении «золотого сечения», найти фигуры, равновеликие квадратному локтю, дать несколько пропорциональных рядов, дать графическое изображение ряда иррациональных величин:

а√2, а√3, а√4, а√4, а√6

Неудивительно, что этот математически универсальный замечательный график мог стать еще в глубокой вавилонской древности символом зодческой мудрости, «хытрости храмоздательской».

* * *

Перечисленными выше примерами далеко не исчерпываются расчетные возможности прямоугольного «вавилона».

Обращение к древнерусским мерам длины открывает нам еще одну область применения нашего графика.

Возьмем за основу ту меру, которую сами древнерусские люди считали основной и называли «мерной саженью». Размер ее колеблется по разным данным между 176,0-176,8 см[138].

Примем среднюю величину в 176,4 см и построим квадрат со стороной в мерную сажень, а на основе квадрата — прямоугольный «вавилон», длинная сторона которого будет, как известно, тоже равна мерной сажени в 176,4 см.

Все виды древнерусских саженей займут положение основных геометрических линий этой фигуры, (рис. 21):

Рис. 21. Общая геометрическая система древнерусских саженей (сторона квадрата равна 1 мерной сажени).

Великая сажень (249,46 см) — диагональ квадрата.

«Сажень без чети» (197,21 см) — диагональ половины квадрата.

Мерная сажень (176,4 см) — сторона квадрата.

Косая сажень (216,04 см) — диагональ «вавилона».

Прямая сажень (152,76 см) — диагональ короткой половины «вавилона».

вернуться

138

Рыбаков Б.А. Русские системы мер…, с. 74, 86.