Еще одним крупным источником сопротивления самолетов являлась открытая кабина экипажа, защищенная только спереди козырьком более или менее грубой формы. Обтекание козырька и выреза в фюзеляже приводило к сильной турбулизации потока и увлечению некоторой массы воздуха вслед за самолетом. Это увлечение и является источником сопротивления. Для его ликвидации стали применять закрытые кабины, вначале довольно грубые по форме, а затем все более обтекаемые.
После того как убрано шасси, снижено сопротивление системы охлаждения, сделана обтекаемая кабина, начинает доминировать сопротивление трения, обусловленное большими поверхностями крыльев и их недостаточной гладкостью. Поэтому следующим мероприятием было уменьшение площади крыльев путем перехода от бипланов к монопланам, или вернее, увеличение удельной нагрузки на крыло G/S. Однако размах крыльев при этом не должен быть уменьшен во избежание уменьшения подъемной силы. Практически это привело к сохранению размаха крыльев при уменьшении их площади S, что дало увеличение их удлинения l12/S.
Переход к свободно несущим монопланам освободил самолеты от сопротивления стоек и расчалок. Проблема гладкости обшивки встала особенно остро для крыльев с металлической обшивкой. Вначале отказались от гофрированной обшивки и перешли на гладкую и более толстую обшивку. Затем перешли на заклепки с потайными головками, что можно было сделать лишь при еще более значительных толщинах обшивки и, наконец, стали применять такую технологию производства и обработки поверхности крыльев, которая обеспечивала удовлетворительную их гладкость. Оптимальная -- "зеркальная" гладкость требовала значительного усложнения технологии и не нашла широкого применения.
Переход на повышенную удельную нагрузку на крыло для истребителей -- с 40-60 кГ/м2 до 100-150 кГ/м2 -- потребовал разработки и применения средств механизации крыльев с целью увеличения их Cymax. Это было достигнуто применением закрылков, щитков, предкрылков и различных в разных сечениях профилей крыльев. Естественно, что наибольший успех имели те мероприятия, которые давали полезный эффект в разных отношениях или, во всяком случае, не имели серьезных отрицательных свойств.
На рис. 5 приведен график изменения значений F0 для истребителей по годам. В период первой мировой войны вначале наблюдалось некоторое уменьшение вредной площади с 1 м2 до 0,7-0,8 м2, достигнутое благодаря некоторым аэродинамическим улучшениям; однако к концу войны вместе с резким увеличением мощностей двигателей увеличилось и значение F0.
В период 1920-- 1930 гг. наблюдалось небольшое уменьшение F0, а после 1934 г. его значение снизилось более чем в два раза, и для монопланов периода второй мировой войны было характерно значение F0, равное 0,35-0,3.
Как мы показали, уменьшение F0 слабо увеличивает максимальную подъемную силу; так, если F0 будет уменьшено в три раза, то подъемная сила увеличится только на 20%.
Рис. 5. График изменения приведенной вредной площади F0 маневренных истребителей по годам
Для увеличения максимальной перегрузки при маневре важнейшее значение имело применение высотных двигателей. Принцип работы высотных двигателей состоит в следующем. Вес двигателя определяется его максимальной мощностью и схемой конструкции. Основную долю веса составляют система сжатия и расширения газов и система передачи энергии на винт. У обычного невысотного двигателя расчетным по прочности и весу параметром является работа на малой высоте, т. е. при максимальной плотности воздуха. По мере подъема на высоту двигатель все более и более разгружается и, таким образом, оказывается излишне прочным и излишне тяжелым для этих высот. Проще всего сделать двигатель высотным, т. е. приспособленным для работы на желаемой высоте, если рассчитать его размеры и прочность по условиям работы на расчетной высоте, а на меньших высотах не допускать работы на полной мощности путем ограничения подачи топлива. Такой двигатель называется переразмеренным, и при определенном весе на расчетной высоте он окажется более мощным, чем невысотный двигатель.
Поскольку увеличение размеров двигателей для самолетов является нежелательным, то для увеличения мощности стали применять повышение числа оборотов двигателя и предварительное сжатие воздуха или рабочей смеси перед подачей в цилиндр. Реализация этих мероприятий происходила постепенно по мере улучшения конструкционных материалов, создания легких компрессоров для предварительного сжатия и разработки топлив, которые давали сгорание при повышенном давлении без явления детонации.
Наиболее эффективным средством предварительного сжатия смеси оказался центробежный нагнетатель. Он и нашел самое широкое применение в период 1935-- 1945 гг. Его основное преимущество заключается в небольшом весе, а основной недостаток -- в излишнем нагревании смеси, в связи с чем понижается ее плотность. При работе на малой высоте, когда эффект сжатия не используется, мощность двигателя оказывается пониженной как вследствие затраты части мощности на вращение нагнетателя, так и в результате ненужного нагревания смеси. При большой высотности двигателя падение его мощности на малых высотах приводило к существенному ухудшению летных характеристик самолета на этих высотах, и особенно его маневренности. Для устранения этого недостатка были сконструированы устройства для изменения передаточного числа привода центробежного нагнетателя.
Другим недостатком двигателя с нагнетателем было ухудшение экономичности, т. е. повышение удельного расхода двигателя. Причина этого заключается в том, что если сжатие рабочего тела происходит дважды -- в нагнетателе и в цилиндре, то расширение его происходит только в цилиндре, т. е. происходит как бы недорасширение рабочего тела, и выхлопные газы выбрасываются в атмосферу еще с большим запасом энергии. Этот недостаток можно устранить, если подавать выхлопные газы на турбину, а с турбины передавать мощность через специальный редуктор на вал двигателя. Такая система применялась на поршневых двигателях во второй половине сороковых годов, однако с появлением турбовинтовых двигателей эта система отпала.
Значительно большее применение нашла несколько иная система: мощность, которую получала турбина от выхлопных газов, подавалась на привод нагнетателя, и двигатель освобождался таким образом от дополнительных затрат мощности на вращение нагнетателя. Достоинство подобных турбокомпрессорных агрегатов заключалось в основном в обеспечении ими большой высотности двигателя и применялись они поэтому на специальных высотных самолетах -рекордных или военных разведчиках и истребителях.
Для сравнения маневренных характеристик самолетов с невысотными и высотными двигателями необходимо принять некоторую систему сравнения. Очевидно, что на малой высоте самолет с невысотным двигателем будет более маневренным. На больших высотах, наоборот, более маневренным будет самолет с высотным двигателем. Однако высотности бывают разные и поэтому трудно выбрать высоту для сравнения. Можно производить сравнение по максимальным перегрузкам, независимо от высоты.
Можно провести и такое условное сравнение: зная мощность высотного двигателя Np на расчетной высоте, находим затем его мощность на малой высоте Nэ, как если бы он был невысотным, или, иначе говоря, продолжаем его характеристику мощности по высотам до высот, меньших расчетной, вплоть до уровня земли.
По этой мощности находим перегрузку nуэ и для самолетов с высотными двигателями. Следует еще указать, что высотность двигателей зависит также и от скорости полета, если заборник воздуха поставлен против потока и в нем используется сжатие от скоростного напора.
Перейдем к обзору маневренных самолетов периода 1932-- 1938 гг. Основные характеристики рассмотренных самолетов даны в табл. 3. Поскольку они имели высотные двигатели с винтами изменяемого шага, значения Y и nу даны для мощностей Nр и Nэ. Характеристики виражей приведены для малых высот, но при условии, что перегрузка соответствует мощности на расчетной высоте. На самом деле мощность у земли несколько меньше, чем на расчетной высоте, но зато плотность воздуха выше, и поэтому в области высот от земли до расчетной подъемная сила, а следовательно, и перегрузка примерно постоянны.