Выбрать главу

Если рассматривать самолеты, подобные по форме, то подъемная сила будет определяться произведением мощности на размах крыльев. При поднятии на высоту подъемная сила будет убывать пропорционально корню кубичному из изменения плотности воздуха и, кроме того, соответственно изменению мощности двигателей с высотой в степени 2/3. Зная величины максимальной подъемной силы на разных высотах, мы легко можем определить высоты потолков при различных полетных весах.

Полет на самолете будет надежен только при наличии возможности маневрирования. Иными словами, полетный вес должен быть существенно меньше, чем величина максимальной подъемной силы. Изучение характеристик самолетов показало, что при полете на малой высоте вес самолета не должен превосходить 60-65% максимальной подъемной силы, однако, даже у маломаневренных самолетов вес, как правило, не превышает 50-55% максимальной подъемной силы на малой высоте. В дальнейшем при рассмотрении характеристик летательных аппаратов мы будем прежде всего определять максимальную подъемную силу, пользуясь приведенными приближенными формулами, или производить более точный расчет с помощью метода, который будет изложен далее.

Рис. 3. Схема учебного самолета "Фарман-4" (1909 г) с ротативным двигателем "Гном" мощностью 50 л. с. Размах крыльев 10,5 м; площадь крыльев 42 м2; вес пустого самолета около 350 кГ; полетный вес с одним летчиком 500 кГ.

Перейдем к рассмотрению характеристик и свойств самолета "Фарман-4". Как видно из схемы, приведенной на рис. 3, это биплан с прямоугольными крыльями, многочисленными стойками и растяжками. Двигатель толкающий, т. е. расположенный позади крыльев и позади центра тяжести. Хвостовое оперение тоже бипланное и соединено с коробкой крыльев деревянной фермой с проволочными растяжками. На хвостовом оперении находятся задний руль высоты и два руля направления. Спереди на небольшой ферме установлен передний руль высоты. Оба руля -- задний и передний -- отклоняются одновременно, но, естественно, в разные стороны. Интересно, что у ранних вариантов самолета был только передний руль, затем был добавлен и задний, а еще позже передний руль вместе с фермой был убран. Элероны имеются на обоих крыльях, но управление ими сделано упрощенное и они могут отклоняться только вниз.

В центральной части самолета установлена грузовая рама в виде двух брусков, соединенных поперечинами. В задней части рамы установлен двигатель, а в передней -- два сиденья, ручка управления и ножная педаль; ручка помещена не в центре, как обычно, а справа. Летчик и пассажир сидят совершенно открыто в воздушном потоке. Управление двигателем производится при помощи крана подачи бензина и "контакта" -- включателя зажигания.

Ротативный двигатель "Гном" имел очень широкое распространение в период 1909-- 1914 гг. Его устройство интересно тем, что коленчатый вал закреплен, а цилиндры, расположенные звездообразно, вращаются вместе с картером. Винт прикрепляется к картеру. Устройство двигателя очень просто, вес его небольшой: двигатель мощностью 50 л. с. весил 76 кГ. Экономичность двигателя была низкая и надежность его невысокая, однако, при умелом уходе он работал достаточно надежно. П. Н. Нестерову пришлось летать только на самолетах с ротативными двигателями и даже совершать на них довольно длительные перелеты.

Учитывая бипланную схему, мы можем получить эквивалентный размах

Величину F можно найти по известной нам максимальной скорости самолета, равной 65 км/час, или 18 м/сек; приравнивая выражения для тяги 75Nh/V и сил сопротивления, мы получим значение F:

для h0,75 и G500 кГ получим F4,5-5 м2.

Теперь найдем максимальное аэродинамическое качество Kmах0,78lэ/F1/24,2 и скорость полета на максимальном качестве

или 47 км/час.

Важно посмотреть, какому значению Cу это соответствует. Значение Cу равно удельной нагрузке на крыло, деленной на скоростной напор:

Интересно, что в это выражение не входит размах крыльев. Для самолета "Фарман-4" мы получим Cун1,1; это довольно большое значение Cу, близкое к предельному; для полета на минимальной мощности мы получили бы Cуэ1.73Cун1,9 -- что явно выше максимального значения. Из этого мы можем сделать вывод, что увеличение ширины крыльев позволило бы увеличить максимальную подъемную силу.

Определяя Ymах, мы должны исходить из условия полета при максимальном качестве, а не на экономичном режиме. Учитывая приближенно, что на пониженной скорости будет уменьшен коэффициент полезного действия винта и уменьшена мощность двигателя из-за уменьшения числа оборотов двигателя, мы примем h0,7 и N47 л. с.; тогда получим:

При полетном весе, равном 500 кГ, запас подъемной силы будет равен nуYн/G1,4-1,45. Это довольно малый запас, но для полета на малых высотах с ограниченным маневрированием достаточный. При полете с пассажиром полетный вес будет равен приблизительно 580 кГ и ny1,25. Это уже очень малый запас, и подобные полеты, в том числе, и учебные, производились на малых высотах в хорошую погоду. В 1910 г. летчик Е. В. Руднев совершил перелет с пассажиром из Петербурга в Гатчину дальностью около 65 км. Этот перелет происходил в условиях пониженной температуры, когда мощность двигателя увеличилась примерно на 4% и плотность воздуха -- на 7-8%; это дает увеличение Y на 5% и тогда Ymах760 кГ.

При неработающем двигателе воздушный винт дает значительное дополнительное сопротивление, особенно, если он вращается; значение F в этом случае равно примерно 5,5 м2 и аэродинамическое качество около 3,9 при Су1,3. Спуск нужно производить с запасом скорости, когда Су будет не более 0,8 и аэродинамическое качество окажется равным примерно 3,5. Это будет соответствовать довольно крутому планированию под углом 16,5о при скорости 15,5 м/сек и при скорости снижения 4,5 м/сек.

Низкое аэродинамическое качество при малой скорости полета вызывает очень неблагоприятные явления при внезапном уменьшении тяги. Допустим, что самолет летит горизонтально и тяга равна силе сопротивления. К высоте полета h прибавим кинетическую высоту hкV2/2g и получим энергетическую высоту hэh+hк. В случае остановки двигателя начнется падение уровня энергии по условию Dhэ-Ds/K, и линия уровня энергии резко переломится. Траектория полета будет изменяться более плавно. Выражение для подъемной силы можно дать через кинетическую высоту Y Суrghк

Из рис. 4 легко видеть, что сразу же после остановки двигателя начнется резкое уменьшение hэ примерно по условию

Если в исходном полете V18 м/сек, hк16,6 м, то через 2 сек после остановки двигателя самолет пройдет путь около 30 м и уровень энергии понизится на 9 м. За это время самолет не успеет существенно уменьшить высоту и потому величина hк окажется уменьшенной почти в два раза, а вместе с ней и подъемная сила. Самолет окажется в условии возмущенного движения по отношению к траектории планирования, опишет некоторую волнообразную траекторию и через некоторое время может войти в режим планирования с постоянной скоростью.

Рис. 4. Схема полета самолета "Фарман-4" при остановке двигателя

Важно обратить внимание, сколь быстро произошла потеря скорости. Если летчик инстинктивно попытается удержать самолет от "проваливания", скорость упадет еще более резко; гораздо лучше было бы энергично уменьшить подъемную силу быстрым наклонением самолета вниз, и еще лучше, если бы самолет сам, в силу своей устойчивости, автоматически уменьшил угол тангажа.

К сожалению, самолет "Фарман-4" вследствие очень задней центровки не имел такой тенденции и, если летчик не наклонял его с помощью руля высоты довольно круто вниз, он оставался примерно в исходном горизонтальном положении. Почти все аварии этого самолета происходили в результате перехода его в парашютирование в случае внезапной остановки двигателя или при вялом переводе самолета на планирование.