Результаты исследований А. Поккельс 1, Рэлея 2 и Ф. Нансена 3 по влиянию загрязнений на поверхностное натяжение воды также убеди тельным образом свидетельствуют в пользу приведённых утверждений.
1 А. Росkеls. Nature, XLIII, 437; XLVI, 418; XLVIII, 152; Ann. d. Phys., VIII, 854.
2 Rayleigh. Phil. Mag., 1899, XLVIII, 321.
3 F. Nansen. Norweg. North. Polar. Exped. Scient. Results, 1900, 10.
Вследствие изложенного выше можно думать, что бо́льшая часть рассмотренных отклонений должна объясняться не истинными различиями в величине коэффициента поверхностного натяжения, а различиями методов, использованных при измерении этой величины.
Теперь мы более внимательно продолжим рассмотрение некоторых из упомянутых исследований и сравним их результаты с результатами, полученными в настоящей работе.
Мы начнём с исследований Педерсена, поскольку проведенное им определение коэффициента поверхностного натяжения воды осуществлялось тем же методом (колебания струи), который использовался нами. Педерсен получил, как показывает табл. 6, значение, заметно превышающее (примерно на 2%) найденное в настоящей работе. Поскольку, однако, он не исследовал изменения длины волны, а определил её как некоторое среднее значение на участке струи, расположенном на сравнительно небольшом расстоянии от отверстия, причина расхождений между его и нашими результатами, вероятно, заключается в том, что Педерсен использовал слишком малое значение длины волны (см. стр. 38).
Среди других методов определения коэффициента поверхностного натяжения наиболее часто используются методы капиллярной трубки и капиллярных волн; они представляются наиболее важными.
Из экспериментальных работ, проводившихся с помощью первого из упомянутых методов, нужно особо отметить работу Фолькмана, имея в виду прекрасную воспроизводимость его результатов, достигнутую благодаря особо тщательному измерению размеров трубок и их промывке. Эта воспроизводимость, независимая от размеров трубок и сорта стекла, не лишает оснований критику результатов, которые можно получить с помощью метода капиллярных трубок. Как видим, Фолькман нашёл значение коэффициента поверхностного натяжения, которое очень мало отличается от полученного автором: различие составляет примерно 0,7%.
Как видно из табл. 6, большое число исследований было в последнее время проведено методом капиллярных волн. Мы видим, что величины, найденные с помощью этого метода, обычно превышают величины, определённые в данной работе. Взаимная согласованность результатов определений искомой величины в различных исследованиях не очень удовлетворительна. По мнению автора, это объясняется тем, что во многих случаях экспериментальные условия существенно не соответствовали предположениям, принятым при выводе теоретических формул. Сейчас мы попробуем показать, что здесь имеется в виду.
Эксперименты, проведенные по упомянутой методике, могут быть подразделены на две группы. В одних экспериментах используются прямолинейно распространяющиеся волны, образованные с помощью колебаний стеклянной пластины, укрепленной на одной из пластин камертона, в других — стоячие волны, полученные в результате интерференции между двумя расходящимися круговыми волнами, создаваемыми двумя булавками, укрепленными на обеих пластинах камертона.
В числе авторов, которые использовали первый метод, только Дорсей и Коловрат-Червинский исследовали значение длины волны на различных расстояниях от генератора. Оба исследователя обнаружили существенные нерегулярности вблизи генератора, причём длина волны зависела от расстояния от пластины камертона и оставалась постоянной на больших расстояниях от неё. Упомянутые авторы, зная об этом эффекте, использовали для определения коэффициента поверхностного натяжения только те волны, которые находились на определённом расстоянии от стеклянной пластинки (Дорсей — 4 см, Коловрат-Червинский — 8 см). Поскольку длина волны вблизи стеклянной пластинки была больше, чем вдали от нее, это может объяснить тот факт, что как Дорсей, так и особенно Коловрат-Червинский нашли для коэффициента поверхностного натяжения более низкие значения, чем другие исследователи, использовавшие тот же самый метод, но не предпринимавшие в этом направлении соответствующих предосторожностей.
Другой метод, использующий стоячие волны, также страдает, как заметил и Коловрат-Червинский, определёнными дефектами. При измерениях длины волны колебаний по прямой, соединяющей упомянутые булавки, удается исследовать только те из волн, которые находятся на таком небольшом расстоянии от булавок, что нельзя обеспечить исключения каких-либо существенно нерегулярных явлений. По этой причине результаты, найденные по указанной методике, не представляются очень надёжными. В частности, очень большие значения коэффициента поверхностного натяжения, полученные в работах Грунмаха, Брюммера и Левенфельда, и значительные расхождения между результатами их отдельных измерений можно, вероятно, объяснить очень малым расстоянием (1,8 см) между булавками, использованными этими исследователями. Калэн, который использовал тот же самый метод, но у которого расстояние между булавками составляло 7 см, также нашёл существенно меньшее значение коэффициента поверхностного натяжения, причём взаимная согласованность его результатов намного превосходила наблюдавшуюся упомянутыми выше авторами.
В результате этого рассмотрения автору не представляется необходимым делать вывод о том, что метод капиллярных волн в действительности даёт для коэффициента поверхностного натяжения значения, существенно более высокие, чем те, которые были найдены по методу, описанному в настоящей статье.
ЗАКЛЮЧЕНИЕ
В настоящей работе для определения величины коэффициента поверхностного натяжения воды использован метод колебаний струи, предложенный Рэлеем. Этот метод имеет фундаментальные преимущества, связанные с тем, что в исследованиях изучается свежеобразованная поверхность,
В первой части настоящей работы показано, что теория Рэлея, развитая для бесконечно малых колебаний струи жидкости без учёта вязкости, может быть дополнена и уточнена учётом влияния конечных значений амплитуды и вязкости.
В экспериментальной части этого исследования показано, как наиболее простым способом оказывается возможным обеспечить выполнение на используемом для измерений участке струи условий, на которых основывается теоретический расчёт.
Конечным результатом своих измерений автор считает значение коэффициента поверхностного натяжения воды (при температуре 12° С), равное 73,23 дин/см.
Поступила 12 февраля 1909 г.
1910
2 К ОПРЕДЕЛЕНИЮ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ СВЕЖЕОБРАЗОВАННОЙ ПОВЕРХНОСТИ ВОДЫ*
* On the Determination of the Tension of a recently formed Water-surface. Proc. Roy. Soc. (London), 1910, A84, 395-403.
В дополнение к моей статье, опубликованной в «Philosophical Transactions» 1 и посвящённой определению коэффициента поверхностного натяжения воды, я хотел бы добавить следующие замечания, относящиеся к определению величины коэффициента поверхностного натяжения свежеобразованной поверхности воды и к некоторым подробностям, существенным для определения этого коэффициента.
1 N. Воhr. Phil. Trans. Roy. Soc., 1909, A209, 281 (статья 1). (В последующих ссылках — I с указанием страницы.— Ред.)
Ленард в недавно опубликованной статье 2 определил коэффициент поверхностного натяжения воды с помощью исследования колебаний падающих капель и нашёл для этого коэффициента значения, которые существенно превосходят определённые с помощью других методов. На основании этого, а также и других экспериментальных результатов, опубликованных в его предыдущей статье 3, он сделал вывод о том, что коэффициент поверхностного натяжения свежеобразованной поверхности воды очень велик, но в течение очень короткого времени (доли секунды) его величина существенно уменьшается. Он отмечает, что этот результат находится в согласии с экспериментами, опубликованными в моей работе, о которой упоминалось выше. Здесь я хочу попытаться объяснить, какие причины не позволяют мне согласиться с выводами Ленарда.