Выбрать главу

Том спрял да чете и се замислил. Възможно ли е да има други начини за постигане на по-голяма тяга с по-малко устройство? Колкото по-висока е температурата, толкова по-силна е тягата. Колкото е по-силна тягата, толкова по-малък и по-компактен би могъл да е двигателят. Кой пламък може да даде най-високите скорости на газовете? Кой пламък е „по-горещ“ от най-горещите химични пламъци?

Кварталната бакалия имала неонова реклама на прозореца. Тя винаги го очаровала. Докато растял, той неведнъж съзерцавал блестящите лампи и гледал червения газ, изпълващ рекламата със светлина. Сега погледът му отново попаднал върху нея и Том внезапно проумял нещо изключително важно. Дали светещият неон е газът, чиято „скорост“ е по-висока от тази на химическата ракета? Нима отговорът на мъчещия го въпрос е стоял през цялото време пред очите му?

Разбира се! Електрическа ракета! Електричество, мълнии! Това са нещата, чиято скорост се доближава до скоростта на светлината! Най-високите скорости могат да се постигнат с помощта на електричеството. Сега вече наистина имало нещо, с което да се захване здравата. Колко бързо ще се движи газът в електрическо поле? Вероятно скоростта му ще бъде много по-висока от постигнатата с каквато и да било химична експлозия. Сега вече разполагал с посока. Сега мечтите му щели да водят текстовете вместо обратното.

Всяка книга, в която ставало дума за електрически разряди, посочвала невъобразими скорости на светещите газове. Сър Уилям Крукс описва молекулярните „средни свободни пътища“ — свободното пространство, през което йоните могат да се ускоряват в приложеното електрическо поле. Скоростите им били огромни, много по-големи от онези, които можели да се постигнат чрез химични експлозии. Известно било, че и най-малката искра е в състояние да произведе огромно налягане (Рейс). Но подобни скорости би трябвало да взривят неоновите лампи, помислил си Том. Защо това не ставало?

Неоновите лампи представляват тръби, в които газовете са под ниско налягане. Постоянният електрически ток „притиска“ газа в тясна блестяща нишка, която се отблъсква от стените на тръбата. Лампите, работещи с постоянен ток, никога не експлодирали. Известно е обаче, че те се пръскат, ако токът се подаде на импулс. Стига се до освобождаването на огромна експлозивна тяга — при това при съвсем ниско налягане! Това означава, че скоростта на газа трябва да е много висока, тъй като количеството му в лампата е почти нулево.

Том продължил проучванията си. Имало случаи, при които удар от мълния взривявал малки предмети, в които се съдържали малки количества въздух под нормално налягане. Подобни феномени означавали, че електрическите импулсни разряди могат да се съчетаят с газове с нормално налягане и да се получи огромна тяга. Нещо повече — някои майстори използват ежедневно този принцип, за да заваряват метали. Местният оксиженист използвал електрически импулси в комбинация с различни газове и така споявал металите един за друг. Том научил, че оксиженът често „ритал“ доста силно. Освен това имало случаи, когато много масивни метални предмети били отхвърляни с огромна скорост от налягането на ярката дъга.

Е, в такъв случай разполагал с всичко, каквото му било нужно. Веднага се появили няколко проблема, но решаването им била „детска работа“. Дъгата на оксижена образувала силна тяга и високи температури. От новите материали можели да се направят всякакви ракетни горивни камери, в които да се използват електрически дъги. Проблемът не бил неразрешим. Керамиката също е възможен вариант, колкото и невероятно да изглеждало по онова време. Това били неизследвани територии и Том се заел да проектира нещо съвсем ново.

Според математическите таблици, приведени от учените, скоростта на молекулите на газа в електрическите дъги се увеличавала с увеличаването на волтажа. По-високият волтаж означавал по-високи скорости на компонентите. „Дебелината“ и „яркостта“ на дъгата зависела от гъстотата на газа и количеството ток. Тези три фактора можели да създадат огромна тяга, ако се нагласят по-подходящия начин. Тягата щяла да бъде много по-голяма от получаваната при химическите ракети. При един и същ обем използващото електрическа дъга реактивно устройство би било няколко пъти по-мощно от еквивалентно химическо реактивно устройство. Мисълта била зашеметяваща. Но ако е вярна, защо тогава нито един професионален дизайнер не е направил все още електрическа ракета?

Подобен електродвигател би могъл да бъде малък, компактен и ефективен, многократно надвишаващ производителността на която и да било химическа ракета. С такъв двигател можело да се стигне чак до звездите. Планът бил осъществим с помощта на широко достъпни материали. В кварталните магазини можели да се намерят газове и електроди. Подобна мощна ракета можела да се сглоби и в работилницата в задния двор. Дъгата пламък на малкия електрически космически кораб щяла да бъде бяла и малка. И щяла да се управлява по начини, за които дори Годар не можел да мечтае.