Подобным же образом можно относить положения звёзд к эклиптике, что особенно полезно в теории Луны и планет. Воображают большой круг, проходящий через центр светила перпендикулярно к плоскости эклиптики; этот круг называют кругом широты. Дуга этого круга, заключённая между эклиптикой и светилом, измеряет его широту, северную или южную, в зависимости от наименования полюса, расположенного с той же стороны эклиптики. Дуга эклиптики между кругом широты и точкой весеннего равноденствия, отсчитываемая с запада на восток от этой точки, называется долготой светила, положение которого, таким образом, определяется его долготой и широтой. Легко понять, что если известна наклонность экватора к эклиптике, долготы и широты светил могут быть выведены из наблюдённых значений их прямых восхождений и склонений.
Понадобилось немного лет, чтобы обнаружить изменения в прямых восхождениях и склонениях звёзд. Вскоре было замечено, что, меняя положение относительно экватора, они сохраняли ту же широту; из этого вывели, что изменения их прямых восхождений и склонений вызваны общим движением этих звёзд вокруг полюсов эклиптики. Эти изменения можно ещё представить иначе, полагая звёзды неподвижными и заставляя двигаться вокруг этих полюсов полюса экватора. В этом движении наклонность экватора к эклиптике остаётся неизменной, а узлы, или точки равноденствий, равномерно отступают на 154.сс63 [50."10] в год. Раньше мы уже видели, что это отступление точек равноденствия делает тропический год немного короче звёздного. Таким образом, разница обоих годов, звёздного и тропического, и изменения прямых восхождений и склонений звёзд зависят от этого движения, из-за которого полюс экватора описывает ежегодно дугу в 154.сс63 [50."10] маленького круга на небесной сфере, параллельного плоскости эклиптики. Именно в этом и заключается явление, известное под названием прецессии равноденствий.
Точность, которой современная астрономия обязана применению оптических труб в астрономических инструментах и часам с маятником, позволила обнаружить небольшие периодические неравенства в наклонении экватора к эклиптике и в прецессии равноденствий. Брадлей, который открыл их и с исключительной тщательностью следил за ними в течение многих лет, вывел закон, который может быть представлен следующим образом.
Вообразим полюс экватора движущимся по периметру малого эллипса, касательного к небесной сфере, с центром, который можно рассматривать как средний полюс экватора. Этот центр каждый год равномерно описывает 154.сс63 [50."10] параллели к эклиптике, на которой он расположен. Большая ось этого эллипса находится всегда в плоскости круга широты и соответствует дуге этого большого круга в 59.сс56 [19."30], а малая ось соответствует дуге в 111.сс30 [Зб."06] его параллели. Положение истинного полюса экватора на этом эллипсе определяется так: в плоскости эллипса воображают маленькую окружность с тем же центром и с диаметром, равным большой оси. Положим, что радиус этого круга движется равномерно в попятном направлении так, что он совпадает с той половиной большой оси, которая ближе к эклиптике, всякий раз, когда средний восходящий узел лунной орбиты совпадает с точкой весеннего равноденствия. Далее из конца этого подвижного радиуса опустим перпендикуляр на большую ось эллипса. Точка, в которой этот перпендикуляр пересечёт эллипс, и есть место истинного полюса экватора. Это движение полюса называется нутацией.
При описанных выше движениях взаимные положения звёзд сохраняются. Но великий наблюдатель,2 которому мы обязаны открытием нутации, обнаружил у всех этих светил общее периодическое движение, которое немного изменяет их взаимное расположение. Чтобы представить себе это движение, надо вообразить, что каждая звезда ежегодно описывает маленькую параллельную эклиптике окружность, центр которой соответствует среднему положению звезды, а диаметр, видимый с Земли, равен 125сс [40."5], и что звезда движется по этой окружности, как Солнце по своей орбите, однако так, что Солнце всегда опережает её на 100g [90°]. Эта окружность проектируется на поверхность неба в виде эллипса, большее или меньшее сжатие которого зависит от высоты звезды над эклиптикой, причём малый радиус его относится к большому как синус этой высоты к радиусу. Отсюда происходят все изменения этого периодического движения звёзд, называемого аберрацией.