Сжатием, или эллиптичностью, эллиптического сфероида называют избыток его экваториальной оси над полярной, принятой за единицу. Чтобы его определить, достаточно измерить два градуса в направлении меридиана. Если сравнить между собой дуги, измеренные во Франции, в Перу и в Индии, которые благодаря своей протяжённости, отдалённости друг от друга, тщательности измерений и репутации наблюдателей заслуживают предпочтения, то находим, что сжатие земного эллипсоида равно 1/310, длина большой полуоси равна 6 376 606 м и длина малой полуоси равна 6 356 215 м.11
Если бы Земля была эллиптической, то сравнивая попарно разные измерения земных градусов, мы должны были бы получить приблизительно одинаковые величины сжатия. Но их сравнение между собой даёт различия, которые трудно объяснить только ошибками наблюдений. Поэтому представляется, что Земля не имеет форму совершенно правильного эллипсоида. Посмотрим теперь, каковы свойства земных меридианов при любом предположении о фигуре Земли.
Плоскость небесного меридиана, определяемая астрономическими наблюдениями, проходит через ось мира и через зенит наблюдателя, поскольку эта плоскость делит на равные части параллельные экватору дуги, описываемые звёздами над горизонтом. Все точки на Земле, имеющие зенит на окружности этого меридиана, образуют соответствующий земной меридиан. Имея в виду огромность расстояния до звёзд, отвесные линии, восставленные из этих точек, можно считать параллельными плоскости небесного меридиана. В результате земной меридиан можно определить как кривую, образованную соединением оснований всех отвесных линий, параллельных плоскости небесного меридиана. Эта кривая лежит целиком в плоскости этого меридиана в случае, если Земля есть тело вращения. Во всех других случаях она от этой плоскости отклоняется. В общем случае она представляется линией, которую геометры называют кривой двоякой кривизны.
Земной меридиан не есть линия, в точности определяемая тригонометрическими измерениями в направлении небесного меридиана. Первый отрезок измеренной линии касателен к поверхности Земли и параллелен плоскости небесного меридиана. Если этот отрезок продолжить до встречи с бесконечно близкой отвесной линией и затем перегнуть это продолжение к основанию линии отвеса, получим второй отрезок кривой и таким же способом и другие. Линия, проведённая таким способом, — самая короткая из всех, которые можно провести на поверхности Земли между какими-нибудь двумя точками, взятыми на этой линии. Она не лежит в плоскости небесного меридиана и совпадает с земным меридианом только в том случае, если Земля есть тело вращения, по разница между длиной этой линии и длиной соответствующей дуги земного меридиана столь мала, что, не внося заметной ошибки, ею можно пренебречь.
Очень важно умножить измерения Земли во всех направлениях и в возможно большем числе мест. Можно в каждой точке земной поверхности представить оскулирующий эллипсоид, совпадающий с ней на небольшом участке вокруг точки касания. Земные дуги, измеренные в меридиональном направлении и перпендикулярно к нему, позволят узнать свойства и положение этого эллипсоида, который может и не быть фигурой вращения и заметно изменяться на больших расстояниях.