Выбрать главу

Взяв за единицу длину маятника, делающего в Парижской обсерватории 100 000 колебаний в сутки, нашли, что на уровне моря на экваторе его длина равна 0.99669, тогда как в Лапландии, в точке с высотой полюса 74.g22 [66.°80], она оказалась 1.00137. Путём многочисленных и точных наблюдений Борда установил, что в обсерватории Парижа длина маятника, принятая за единицу и приведённая к пустоте, равна 0.741887 м.

Увеличение длины маятника при переходе от экватора к полюсам заметно даже на разных точках большой дуги меридиана, пересекающей Францию, как это видно из следующей таблицы результатов многочисленных и точных исследований, сделанных Био, Араго и Матьё.

Место определения

Высота полюса

Высота над уровнем моря

Наблюдённая длина секундного маятника 4

Форментера

42.

g

96 [38.°66]

196

м

0.

м

7412061

Бордо

49.82 [44.84]

0

0.7412615

Париж

54.26 [48.83]

65

0.7419076

Дюнкерк

56.67 [51.00]

0

0.7420865

Длины, определённые в Дюнкерке и в Бордо, путём интерполяции для длины секундного маятника на берегах Франции, на уровне моря, при высоте полюса 50g [45°] дают величину 0.7416274 м. Эта длина и длина градуса меридиана, середина которого соответствует той же точке, послужит, чтобы снова найти наши меры, если с течением времени они изменятся.

Увеличение длины маятника происходит более равномерно, чем увеличение градуса меридиана. Оно меньше отклоняется от отношения квадратов синусов высоты полюса, потому что его измерение, более лёгкое, чем градусные измерения, вносит меньше ошибок или из-за того, что причины, возмущающие правильность фигуры Земли, оказывают меньшее влияние на силу тяжести. Сравнивая между собой все наблюдения, сделанные до сих пор в разных местах Земли, находим, что если за единицу взять длину маятника на экваторе, её увеличение от экватора к полюсу равно произведению 0.0054 и а квадрат синуса широты.13

Кроме того, с помощью маятников было замечено небольшое уменьшение силы тяжести на вершинах высоких гор. Бугер сделал в Перу много таких опытов. Он нашёл, что если принять за единицу силу тяжести на экваторе на уровне моря, то в Кито на высоте 2857 м над этим уровнем она будет 0.999249 и на Пичинче на высоте 4744 м — 0.998816. Это уменьшение силы тяжести на высотах, которые очень малы по сравнению с радиусом Земли, даёт основание думать, что изменения силы тяжести на больших расстояниях от центра Земли очень значительны.

Наблюдения маятников, доставляющие неизменную и легко воспроизводимую во все времена длину, породили идею использовать её как универсальную меру. Нельзя видеть чрезмерное число применяемых мер не только у разных народов, но даже у одной нации, их странные и неудобные для расчётов деления, трудность их определения и сравнения и, наконец, затруднения и обманы, которые из-за этого возникают в торговле, без того, чтобы не оценить как одну из самых больших услуг, какую правительства могут оказать обществу, — принятие системы мер, единообразные деления которой легче всего поддаются подсчётам и которая вытекает наименее сложным образом из фундаментальной меры, указанной самой природой. Народ, который ввёл бы подобную систему, получил бы не только преимущество пожать её первые плоды, но и увидел бы, как другие народы последуют его примеру, и заслужил бы их благодарность, так как власть разума медленно, но неизбежно вознесёт его над национальными самолюбиями и преодолеет другие препятствия, противостоящие всеобщему благу.

Таковы были мотивы, побудившие Учредительное собрание поручить это важное дело Академии наук. Новая система мер и весов явилась результатом работы уполномоченных Академии наук, при ревностном и просвещённом участии нескольких народных представителей.

Тождественность десятичного исчисления и исчисления целых чисел не оставляет никаких сомнений в преимуществах деления всех мер на десятичные доли. Чтобы в этом убедиться, достаточно сравнить трудности умножения и деления смешанных чисел с простотой тех же операций над целыми числами; эта простота делается ещё большей при применении логарифмов, которые можно с помощью простых и дешёвых приборов ввести во всеобщее употребление. В самом деле, наша арифметическая шкала не делится на три и на четыре, на эти два по своей простоте очень часто употребляемые делителя. Прибавления ещё двух единиц было бы достаточно, чтобы обеспечить ей это преимущество. Но такое значительное изменение было бы неминуемо отвергнуто вместе с подчинённой этому изменению системой мер. Двенадцатеричная система имеет то неудобство, что требует запоминания попарных произведений первых одиннадцати чисел, что превышает обычную ёмкость памяти, к которой десятичная система хорошо приспособлена. Наконец, потерялось бы преимущество, по-видимому, породившее нашу арифметику, — употреблять для счета пальцы рук. Поэтому без колебаний была принята десятичная система и, чтобы внести единообразие во всю систему мер, было решено образовать эти меры из одной линейной меры и её десятичных подразделений. Таким образом, вопрос свёлся к выбору этой универсальной единицы, получившей название метра.