Эти явления имеют место во всех портах и на всех берегах морей. Но местные условия, ничего не меняя в законах приливов, имеют большое влияние на их величину и на прикладной час.14
Глава XVI О ЗЕМНОЙ АТМОСФЕРЕ И АСТРОНОМИЧЕСКОЙ РЕФРАКЦИИ
Земля окружена упругой разреженной и прозрачной средой, простирающейся на большую высоту. Как и все другие тела, она имеет вес, который уравновешивает вес ртутного столба в барометре. На параллели 50g [45°] при температуре тающего льда и при средней высоте ртутного столба в барометре на уровне моря, высоте, которая может быть принята равной 0.76 м, вес воздуха относится к весу такого же объёма ртути как единица относится к 10477.9. Отсюда следует, что, если подняться на 10.4779 м, высота столба ртути в барометре уменьшится почти точно на 1 мм и что, если бы плотность атмосферы везде была бы одинакова, её высота была бы 7963 м. Но воздух сжимаем, и если считать его температуру постоянной, то в соответствии с общим законом, которому подчиняются газы и пары жидкостей, плотность его пропорциональна весу, сжимающему этот воздух, и, следовательно, высоте барометра. Поэтому нижние слои воздуха, сжатые верхними, оказываются плотнее последних, которые делаются всё более разреженными по мере увеличения высоты над Землёй. Если бы у всех слоёв воздуха была одинаковая температура, то при возрастании высоты в арифметической прогрессии плотность верхних слоёв уменьшалась бы в геометрической. Чтобы это показать, рассмотрим вертикальный столб воздуха, пересекающий два бесконечно близких слоя атмосферы. Верхняя часть этого столба будет сжата меньше, чем соответствующая нижняя часть, на величину веса маленького столбика воздуха, заключённого между этими двумя частями. Так как температура предполагается одинаковой, разность сжатий двух рассматриваемых слоёв будет пропорциональна разности их плотностей. Если отвлечься от изменения силы тяжести с высотой, эта разность пропорциональна весу маленького столбика и, следовательно, произведению его плотности на длину. Так как оба слоя предполагались бесконечно близкими, плотность столбика можно считать равной плотности нижнего слоя. Таким образом, дифференциальное изменение этой плотности пропорционально её произведению на изменение высоты. Следовательно, если изменить эту высоту на равные величины, отношение дифференциала плотности к самой плотности будет постоянным, что характерно для геометрической убывающей прогрессии, у которой все члены между собой бесконечно близки. Отсюда следует, что при возрастании высоты слоёв в арифметической прогрессии их плотность уменьшается в геометрической прогрессии и их логарифмы, как гиперболические, так и табличные, убывают в арифметической прогрессии.
Эти данные были использованы для измерения высот с помощью барометра. Предполагая, что температура воздуха везде одинакова, исходя из предыдущей теоремы, можно получить разность высот двух станций, умножая на постоянный коэффициент разность логарифмов высоты ртути в барометрах этих станций. Чтобы определить этот коэффициент, достаточно одного наблюдения. Так, мы уже видели, что если при температуре ноль градусов на нижней станции высота столба ртути в барометре была равна 0.76000 м, а на верхней — 0.75999 м, то эта станция находится выше нижней на 0.104779 м. Следовательно, постоянный коэффициент равен этой величине, разделённой на разность табличных логарифмов чисел 0.76000 и 0.75999, что даёт для него 18 336 м. Но это правило для измерения высоты с помощью барометра нуждается в некоторых видоизменениях, которые мы сейчас изложим.
Температура атмосферы не одинакова: она уменьшается с высотой. Характер этого уменьшения непрерывно изменяется. Но по среднему результату из многих наблюдений можно оценить это уменьшение в 16 или 17 градусов на 3000 м высоты. Кроме того, воздух, как и все тела, расширяется при нагревании и сжимается при охлаждении, а путём очень точных опытов было установлено, что его объём, взятый за единицу при температуре 0°, изменяется, как и у всех газов и паров, на 0.00375 на каждый градус температуры; необходимо принять это во внимание при вычислении высот, так как ясно, что для получения такого же понижения высоты барометра надо подняться тем выше, чем пересекаемый слой воздуха более разрежен. Однако из-за невозможности точно знать изменение температуры самое простое, что можно сделать, это предположить эту температуру одинаковой и равной среднему из температур на двух рассматриваемых станциях. Так как объём столба воздуха увеличивается соответственно этой средней температуре, определяемая высота, отвечающая наблюдённому понижению барометра, должна быть увеличена в том же отношении. Это равносильно умножению коэффициента 18 336 на единицу плюс число 0.00375, взятое столько раз, сколько градусов в средней температуре.