Для краткости принято вместо модус понендо поненс говорить модус поненс, а вместо модус толлендо толленс— модус толленс.
1.5 Из чего же сделано доказательство?
Большинство шагов математического доказательства — это применение правил модус поненс или модус толленс. Здесь мы, конечно, упрощаем, поскольку существует большое число техник, развитых в последние два столетия (некоторые из них подробно обсуждаются в гл. 2). Некоторые из этих методов перечислены в разд. 1.2. Все они основаны на модус понендо поненс.
В математике группа — это набор объектов, в котором задана операция, каким-то образом сочетающая эти объекты. Операция должна быть в разумной степени подобна арифметическим операциям, т. е. должна удовлетворять знакомым свойствам вроде ассоциативности (a•(b•c)=(a•b)•c). В группе есть тождественный элемент e (a•e=e•a=a). У каждого элемента a группы есть обратный ему элемент a-1 (a•a-1=a-1•a=e). Некоторые группы коммутативны (a•b=b•a); но далеко не все. Существуют различные типы групп: группы чисел, матриц, операторов в гильбертовом пространстве. Теория групп — одна из величайших унифицирующих абстракций современной математики.
Это действительно изящная и мощная система. Бритва Оккама — логический принцип, установленный в XIV в. (Уильямом Оккамским, (1288–1348)), который гласит, что система доказательства должна включать наименьший возможный набор аксиом и правил вывода. Таким образом минимизируется возможность того, что в систему встроены внутренние противоречия; это происходит за счет того, что проще отыскать источник идей. Вдохновленные как элементами Евклида, так и бритвой Оккама современные математики пытаются сохранить основания своей науки простыми и изящными как только возможно. Списки определений должны быть как можно короче, а наборы аксиом или постулатов — как можно точнее и элегантнее. Если открыть классический учебник по теории групп, такой как шедевр Маршалла Холла [HAL], на первой странице обнаружатся ровно три аксиомы. Вся 434-страничная книга построена только на них[16]. Или возьмите классические «Основы математического анализа» Уолтера Рудина [RUD]. В этой работе все положения науки о действительных переменных основаны всего лишь на 12 аксиомах. А в фундаментальных книгах по теории множеств, таких как [SUP] или [HRJ], ограничиваются всего восемью аксиомами.
1.6 Цель доказательства
В естественных науках (таких как физика, биология, химия) для проверки утверждений принято ставить опыты в лаборатории. Воспроизводимые контролируемые эксперименты служат критерием истинности в этих науках. В своих статьях ученые кратко рассказывают о том, что они обнаружили, а затем описывают шаги соответствующих опытов. Они описывают контроль — стандарт, с которым сравниваются полученные результаты. Заинтересовавшиеся коллеги, ознакомившись со статьей, могут воспроизвести эксперимент в своих лабораториях. Настоящие классические, основополагающие и важные эксперименты становятся учебным материалом, их воспроизводят учащиеся по всему миру. В основном естественные науки не выводятся из фундаментальных принципов (таких как аксиомы). Интеллектуальный процесс протекает более эмпирично, а процедура проверки — тоже непосредственно практическая.
К теоретической физике это не относится. Такие ученые, как Стивен Хокинг, Эдвард Виттен или Роджер Пенроуз, никогда не входят в лабораторию. Они просто размышляют о физике. Они полагаются на экспериментаторов, которые снабжают их пищей для идей. Кроме того, экспериментаторы помогают таким ученым проверять их идеи. Но сами ученые-теоретики не участвуют в процедуре проверки на истинность[17].
Описанный процесс вполне подходит для теоретической физики, но не всегда. Эйнштейновская общая теория относительности была провозглашена в 1915 г., а эксперименты Эддингтона в 1919 г. подтвердили идею (мгновенно сделав Эйнштейна знаменитым). Но теория не была проработана вполне до 1970 г., когда появились идеи о черных дырах и квазарах. Теория струн, которая включает сравнительно новый набор идей и обещает объединить общую теорию относительности с квантовой механикой[18], уже двадцать лет — увлекательная и фундаментальная часть физики. Но никаких экспериментальных подтверждении положений теории струн до сих пор нет. В каком-то смысле теория струн — это набор идей, ожидающих своего рождения.
16
Недавно удалось все основы теории групп уместить в одну аксиому, не используя к тому же слово «и», — см. [KUN], [HIN] и [MCU].
17
В захватывающей статье [JAQ] обсуждается вопрос о том, следует ли математиков, как и физиков, разделить на «теоретиков» и «экспериментаторов».
18
Теория струн довольно-таки «не от мира сего». Эта новая группа идей предназначена для описания фундаментального устройства природы трехмерного пространства, в котором мы живем. Она объясняет феномен гравитации. Но сами струны живут в десяти- или двадцатишестимерном пространстве! Убедительное описание теории струн и ее значение для нашего мира можно найти в [GRE1].