В доказательстве есть и человеческий фактор, который нельзя игнорировать. Принятие новой математической истины — это социологический процесс. Это что-то, что происходит в математическом сообществе. Оно включает понимание, усваивание, обдумывание и обсуждение. Самые выдающиеся математики иногда ошибаются и объявляют новые результаты, а потом выясняется, что неизвестно, как их доказать. В 1879 г. А. Кемпе опубликовал доказательство теоремы о четырех красках, и оно продержалось целых 11 лет, пока П. Хивуд не нашел фатальную ошибку в работе. Первая совместная работа Харди и Литтлвуда была заявлена на заседании Лондонского математического общества в июне 1911 г. Но она никогда не была опубликована, поскольку позднее они обнаружили ошибку в доказательстве. Коши, Ламе и Куммер — каждый из них в тот или иной момент своей карьеры полагал, что доказал Великую теорему Ферма. И каждый из них ошибался. Радемахер в 1945 г. думал, что опроверг гипотезу Римана. Его работа была даже опубликована в Time Magazine. Позднее Радемахеру пришлось отозвать свое утверждение, поскольку Зигель нашел ошибку. В этой книге мы изучаем социальную базу математических дисциплин, разбираемся, как во взаимодействии разных математиков и разных математических культур творится форма нашей науки. Математические ошибки исправляются, причем не формальной логикой, а другими математиками. Это один из краеугольных камней нашей науки[4].
В самом начале XX в. Брауэр дал революционное доказательство своей теоремы о неподвижной точке, а спустя некоторое время решительно отрекся от доказательств от противного (по крайней мере в отношении доказательств существования, а результат о неподвижной точке был именно таким) и создал движение интуиционизма. Позднее эту программу поддержал Эррет Бишоп, и его работа Foundations of Constructive Analysis, написанная в 1967 г., была довольно заметной (переработанное издание, написанное в соавторстве с Дугласом Бриджесом, опубликовано в 1985 г.). Эти идеи представляют особенный интерес для специалистов в теории компьютерных наук, ведь значимость доказательств от противного в компьютерных науках небесспорна (несмотря даже на то, что в свое время Алан Тьюринг расшифровал код Энигмы, применив как раз идеи доказательства от противного в контексте вычислительных машин).
В последние тридцать лет или около того стало ясно, что мы переосмыслили и решительно расширили наше представление о доказательстве. В этом явлении важную динамичную роль сыграли компьютеры. Они могут делать сотни миллионов операций в секунду. Это открывает возможности для экспериментирования, вычисления и визуализации таких вещей, что были немыслимы полвека назад. Следует иметь в виду, что математическое мышление включает овладение понятиями и рассуждениями, в то время как компьютер — просто средство для манипулирования данными, это совершенно разные вещи. Непохоже (см. блестящую книгу Роджера Пенроуза «Новый ум короля»), что когда-либо компьютер сможет думать и доказывать математические теоремы так, как это делает человек. Тем не менее компьютер может предоставить ценную информацию и натолкнуть на идею. Он может изобразить для пользователя вещи, которые тот раньше представить себе не мог. Это ценный инструмент. В нашей книге мы уделим много места изучению роли компьютеров в современной человеческой мысли.
Размышляя о роли компьютеров в математике, уместно напомнить известную историю. Тихо Браге (1546–1601) был одним из величайших астрономов Возрождения. Он разработал научную процедуру, которая позволила ему создать обширную базу данных о движении планет. Его даровитый ученик Иоганн Кеплер (1571–1630) страстно желал получить доступ к этим данным, поскольку у него были идеи о том, как сформулировать математические законы, описывающие движение планет. И Браге, и Кеплер были целеустремленными людьми, однако их взгляды на очень многие вещи разнились. Браге опасался, что Кеплер воспользуется данными, чтобы подтвердить теорию Коперника о Солнечной системе (а именно, что в центре системы находится вовсе не Земля, а Солнце, — это представление противоречило христианской догме). Пока Браге был жив, Кеплер так и не получил доступа к его расчетам.
Однако в эту историю странным образом вмешалось провидение. Спонсор Тихо Браге передал ему остров, где тот построил обсерваторию и работал в ней. Поэтому Браге приходилось выполнять некоторые социальные обязанности — выказывать свою признательность и сообщать о достижениях. На одном приеме Браге выпил так много пива, что его мочевой пузырь лопнул, и он умер. Кеплер вступил с семьей Браге в торг за данные, которые ему были так нужны. Течение научной истории изменилось навсегда.
4
Математики делают ошибки на каждом шагу. Почти всякая опубликованная статья по математике содержит ошибки. В книге [LEC] задокументировано много важных ошибок в математической литературе до 1935 г.