Греки предложили убедительные объяснения, доказывающие истинность этой модели Вселенной. В древнегреческой культуре особый вес имели эстетические аргументы, поэтому они также использовались для обоснования модели. Древнегреческие геометры считали сферу совершеннейшей из фигур, так как она при вращении вокруг оси всегда занимает одну и ту же область пространства. Кроме того, концепция небесной сферы имела смысл еще и потому, что звезды при движении по небу описывают окружности. Земля должна была иметь форму сферы не только по эстетическим причинам, но и потому, что при наблюдении с возвышения было видно, что корпус корабля, уходящего в море, пропадает из вида раньше, чем мачты, а когда корабль возвращается в порт, мачты появляются на горизонте первыми. И в довершение, тень, отбрасываемая Землей на Луну во время лунных затмений, также имела круглую форму.
Земля должна была находиться в центре небесной сферы (отсюда и название геоцентрической модели Вселенной) не только для того, чтобы обеспечить симметричность модели, но и потому, что телу, расположенному в центре сферы, попросту некуда падать. Все направления указывают вверх, следовательно, Земля не может упасть и должна находиться в центре сферы неподвижно.
Доступные данные не позволяли выявить изменение относительных расстояний между звездами (то есть наличие параллакса), которое было бы заметно, если бы Земля двигалась. Сегодня мы знаем, что параллакс звезд незаметен потому, что нас разделяют огромные расстояния. Также если бы Земля двигалась, то птицы, парящие в воздухе, или камни, брошенные вертикально вверх, должны были бы запаздывать относительно ее движения. Если бы Земля вращалась, то предметы, не закрепленные на ее поверхности, улетели бы в космос. Также вращение Земли обязательно должно вызвать сильный ветер. Ничего из вышеперечисленного не наблюдается, следовательно, Земля неподвижна.
Принцип кругового движения Можно сказать, что Платон (427–347 гг. до н. э.) заложил основы программы астрономических исследований в Древней Греции, когда задал ученикам вопрос: с помощью каких равномерных и упорядоченных движений можно рационально объяснить движение планет?
Римская копия греческого оригинала головы Платона, выставленного в афинской Академии после его смерти.
Платон считал, что истину следует искать в мире идей и чистых форм, — к экспериментам этот мыслитель относился с пренебрежением. Можно выделить три основные характеристики учения Платона, которые в большей или меньшей степени повлияли на астрономию и космологию последующих эпох: во-первых, он невысоко ценил результаты наблюдений либо относился к ним с недоверием; во-вторых, ученый был убежден, что космос имеет идеальную геометрическую структуру; в-третьих, Платон сформулировал принцип равномерного кругового движения, согласно которому все небесные тела равномерно движутся по окружностям. Космология Платона изложена в некоторых его диалогах — «Федре», «Федоне», «Государстве» и «Тимее».
В «Государстве» Платон говорит о веретене, в которое вставлено другое, меньшее веретено, и так далее (всего восемь веретен). Он пишет: «Все веретено в целом, вращаясь, совершает всякий раз один и тот же оборот, но при его вращательном движении внутренние семь кругов медленно поворачиваются в направлении, противоположном вращению целого»[1]. Очевидно, что Платон говорит о планетах. Все астрономические и космологические модели, созданные после этого, описывали беспорядочное движение планет. Постулат Платона о равномерном круговом движении планет имел огромное влияние — его ошибочные представления преобладали в астрономии на протяжении двух тысячелетий.
Платоновская модель мира, описанная в его диалогах.
Математик Евдокс Книдский (ок. 390 г. до н. э. — ок. 337 г. до н. э.) первым всерьез рассмотрел вопрос, заданный Платоном. Он предложил оригинальную теорию концентрических сфер, с помощью которой совершенно превосходным образом объяснил движение планет.
В своей теории Евдокс сопоставил каждой планете модель, состоявшую из определенного числа вложенных друг в друга концентрических сфер, в центре которых находилась Земля. Солнцу и Луне соответствовали по три сферы, всем остальным планетам (Меркурию, Венере, Марсу, Юпитеру и Сатурну) — по четыре. Чтобы объяснить движение звезд, Евдоксу хватило всего одной сферы. Таким образом, в общей сложности Евдокс применил 27 сфер: