Выбрать главу

3 (Солнце) + 3 (Луна) + 20 (4 х 5, пять планет) + 1 (звезды) = 27.

Евдокс не связывал движение сфер, соответствующих разным планетам, — математические модели для каждой планеты были независимыми.

Система Евдокса для одной планеты.

Меркурию, Венере, Марсу, Юпитеру и Сатурну соответствовало по четыре сферы, расположенных следующим образом: планета располагалась на экваторе внутренней сферы (сферы 4); полюса этой сферы крепились к другой, концентрической сфере большего размера (сфере 3); полюса сферы 3, в свою очередь, крепились к еще одной сфере большего размера, концентрической предыдущим (сфере 2); и наконец, полюса сферы 2 аналогичным образом крепились к сфере большего размера, концентрической предыдущим (сфере 1).

Таким образом, ось каждой сферы (и, следовательно, оба ее полюса) смещалась в результате движения сферы, в которой она помещалась. Все сферы вращались вокруг своих осей с постоянными и различными скоростями.

Какую роль играла каждая из этих сфер в описании движения планеты? Первая из них (будем называть ее сферой 1) в течение суток вращается с востока на запад, ее ось расположена в направлении север — юг. Эта сфера объясняет суточное движение планеты, соответствует сфере, на которой закреплены звезды, и приводит в движение все остальные сферы. Ось сферы 2 наклонена относительно оси предыдущей сферы на угол, почти равный углу между эклиптикой и небесным экватором, и вращается с запада на восток. Период обращения этой сферы равен сидерическому периоду обращения планеты. Движение этой сферы объясняет собственное движение планеты (с запада на восток). Полюса сферы 3 расположены на экваторе предыдущей сферы (на зодиакальном поясе). Период обращения этой сферы равен промежутку времени между моментами начала попятных движений (синодическому периоду). Ось последней, четвертой сферы, наклонена на определенный небольшой угол относительно оси предыдущей сферы и вращается с той же скоростью, но в противоположном направлении.

Если мы будем производить наблюдения из центра сфер (то есть с Земли) и рассмотрим совокупное движение сфер 3 и 4, то увидим, что планета движется вдоль кривой, называемой лемнискатой Бута (эта лемниската построена на поверхности сферы). Но так как планета также смещается в результате движения сферы 2 (медленное движение на восток) и сферы 1 (движение на запад), при наблюдении из центра сферы мы увидим все особенности ее траектории, в том числе попятное движение.

Следовательно, каждая планета совершает суточное движение вокруг Земли с востока на запад, собственное движение на восток вдоль зодиака, а также попятное движение.

* * *

ЛЕМНИСКАТА

В теории гомоцентричных сфер Евдокса фигурирует кривая под названием лемниската Бута. На плоскости лемниската представляет собой кривую характерной формы, состоящую из двух петель, пересекающихся в центральной точке так, как показано на рисунке.

На плоскости лемниската может быть задана следующим уравнением в общем виде:

(х2 + у2)2 = 2а2 (х2 - у2).

где 2а — расстояние между фокусами F1 и F2. Эту плоскую кривую, также известную как лемниската Бернулли, впервые описал в 1694 году швейцарский математик Якоб Бернулли (1654–1705), рассмотрев ее как видоизмененный эллипс. Если эллипс — это кривая, определяемая как множество точек плоскости, для которых сумма расстояний до двух фиксированных точек F и F2 (фокусов) постоянна, то лемниската — это множество точек плоскости, для которых постоянным будет произведение расстояний до двух фокусов.

* * *

Космология Аристотеля

Великий философ Аристотель (384 г. до н. э. — 322 г. до н. э.), ученик Платона и основатель афинского Ликея, задался целью упорядочить и систематизировать все знания своего времени. Он включил в свою космологию теорию гомоцентричных сфер, чтобы объяснить движение планет, а также заложил основы науки, которую сегодня мы называем античной физикой.

Мраморный бюст Аристотеля в Национальном римском музее.