Схема рассуждений Эратосфена.
Эратосфен знал, что расстояние между этими городами равнялось 5000 стадиев (примерно 800 километров), и определил длину окружности Земли с помощью простой пропорции. Длина окружности Земли должна была превышать расстояние между Александрией и Сиеной в 50 раз, то есть составлять 250 тысяч стадиев. Он округлил результат вычислений и принял один градус равным 70 стадиев, таким образом, общая длина земной окружности составила 252 тысячи стадиев.
К сожалению, нам неизвестно, какой была точная длина стадия, использованного Эратосфеном в расчетах. Греческий стадий примерно равен 185 м — в этом случае длина земной окружности составляет 46620 км (на 16,3 % больше, чем на самом деле). Но если предположить, что ученый использовал египетский стадий, который равнялся 157,5 м, то его результат равен 39690 км (в этом случае ошибка составляет менее 2 %).
Рассуждения Эратосфена были безошибочны, однако следует сделать небольшое замечание относительно точности проведенных им измерений: Сиена не расположена на одном меридиане с Александрией, а Солнце видится с Земли как диск, расположенный на конечном расстоянии, поэтому его нельзя считать бесконечно удаленным точечным источником света. Кроме того, в древности измерение расстояний по суше было ненадежным и становилось источником ошибок. Если учесть погрешности во всех данных, которые применил Эратосфен в вычислениях, то станет очевидно, что полученный им результат был на удивление точным.
Птолемей работал в Александрии на несколько веков позже Эратосфена. В своей «Географии» он, применив строгие научные методы, описал весь известный древним грекам мир. Птолемей изложил математические методы составления точных карт при помощи различных проекций, а также указал географические координаты почти 10 тысяч точек известного в то время мира. При нанесении этих точек на карту он построил сетку параллелей и меридианов и применил такие понятия, как широта и долгота. Нулевой меридиан на карте Птолемея располагался возле Канарских островов, нулевая параллель — вблизи экватора. Северную оконечность обитаемого мира он расположил на параллели острова Туле.
По всей видимости, размеры Земли, использованные Птолемеем, были меньше реальных: он предполагал, что длина дуги экватора величиной в один градус составляет примерно 80 километров, таким образом, длина земной окружности была чуть меньше 30 тысяч километров. Птолемей пользовался огромным авторитетом в эпоху Возрождения, и только благодаря этому моряки осмелились пересечь океан в поисках новых земель.
Задача о представлении криволинейной поверхности на плоскости решается математическими методами. В этом смысле Птолемей также внес значимый вклад в картографию. Считается, что еще до него Гиппарх разделил земную окружность на 360° и построил сетку параллелей и меридианов. Гиппарх изучал способы изображения сферической поверхности на плоской карте и, по мнению некоторых ученых, применил для решения этой задачи стереографическую проекцию. Большое влияние на Птолемея оказал географ и картограф Марин Тирский (ок. 60 — ок. 130), который первым принял меридиан Канарских островов за нулевой, а параллель Родоса — за начало отсчета широты. По всей видимости, он же предложил использовать цилиндрическую проекцию для составления карт.
Чтобы изобразить поверхность Земли на плоскости, Птолемей разработал коническую и псевдоконическую проекции. С их помощью ему удалось изобразить на одной плоскости разные участки земной поверхности в разном масштабе. В своей конической проекции он представил параллели в виде концентрических дуг окружностей, меридианы — в виде прямых линий, сходящихся в фокусе, который совпадал с Северным полюсом. Во второй, псевдоконической проекции Птолемея меридианы также изображались кривыми линиями, сходившимися в полюсе, за счет чего ему удалось изобразить больший участок земной поверхности с меньшими искажениями.
Коническая проекция Птолемея, приведенная в его «Географии» («Geographicae enarrationis libri octo»), изданной в Лионе и Вене в 1541 году.
Коническая проекция Птолемея использовалась вплоть до XV века, пока границы известного мира существенно не расширились. С новыми открытиями для составления карт мира этой проекции оказалось недостаточно, и она стала применяться только в картах отдельных регионов.