Для этого Архимед рассмотрел полушар радиуса R и поместил рядом с ним прямой конус и прямой круговой цилиндр. Радиусы оснований конуса и цилиндра также равнялись R.
Сечения полушара, конуса и цилиндра.
Затем он рассек все три фигуры плоскостью, параллельной основанию цилиндра и расположенной на одинаковом расстоянии d от верха всех трех фигур, и рассмотрел полученные сечения. Сечением цилиндра была окружность радиуса R. Сечением полушара также была окружность, но другого радиуса (обозначим его через r).
Соотношение между r, d и R для полушара.
По теореме Пифагора выполняется соотношение r2 + d2 = R2.
Сечением конуса также была окружность, но другого радиуса, d, так как угол раствора конуса составлял 45°.
Соотношение между R и d для конуса.
Площади сечений таковы:
Так как r2 + d2 = R2, имеем:
Площадь сечения цилиндра = Площадь сечения полушара + Площадь сечения конуса.
Сечения фигуры подобны ломтям хлеба: если для каждого сечения выполняется приведенное выше соотношение, то кажется вполне очевидным, что это же отношение будет выполняться и для объемов фигур. Иными словами,
Объем цилиндра = Объем полушара + Объем конуса.
Архимед знал, как вычисляется объем цилиндра и объем конуса:
V(цилиндра) = πR3; V(конуса) = 1/πR3.
Он получил равенство
V(полушара) = V(цилиндра) — V(конуса) = πR3 — (1/3)πR3 = 2πR3/3
Таким образом,
V(сфера) = 4πR3/3.
И вновь задачи о вычислении объемов были окончательно решены с появлением дифференциального исчисления. Рассмотрим в качестве примера, как с его помощью вычисляется объем шара радиуса г. Начнем с того, что приведем уравнение окружности
х2 + у2 = r2.
Вращая полукруг вокруг оси абсцисс, получим шар.
Шар, полученный вращением полукруга.
Объем тела вращения, полученного вращением плоской фигуры, ограниченной линиями у = f(x), у = 0, х = а и х = Ь, вокруг оси ОХ, вычисляется по формуле:
Эта формула в некотором роде отражает метод Архимеда, если интерпретировать πf(x)2 как площадь круга и представить, что тело вращения, как в примере Архимеда, состоит из «ломтей»-сечений. Напомним, что обозначает интеграл — сумму объемов бесконечного числа сечений бесконечно малой толщины (dx), которые составляют объем тела вращения. В нашем примере
Эпилог
Понятие меры появилось свыше 5 тысяч лет назад, когда возникла необходимость в измерении предметов, окружавших человека. Посмотрим, какими были основные задачи, стоявшие перед математиками конца XIX века и приведшие к созданию теории меры. Древние египтяне занимались вычислением площадей и объемов (см. папирус Ахмеса и Московский математический папирус) и использовали приближенное значение π 4(1 – 1/9)2 = 3,160…, однако строгие доказательства формул для вычисления площадей и объемов привели не они, а уже древнегреческие математики.
Эти доказательства даны в «Началах» Евклида (ок. 300 г. до н. э.), где, однако, нет определений длины, площади и объема — эти понятия определяются неявно при описании фигур. Так, определяется линия, поверхность и тело: линия есть длина без ширины, поверхность — то, что имеет лишь длину и ширину, а тело — то, что имеет длину, ширину и глубину. Евклид также не определил, что означает «измерить» — это слово он использует не только в связи с тремя вышеупомянутыми «величинами», но и по отношению к числам. К примеру, он определяет «часть» и «части» аналогично современным понятиям «делитель» и «не делитель», но использует при этом слово «измерить: «Часть есть число в числе, меньшее в большем, если оно измеряет большее. Части же — если оно его не измеряет». Так, к примеру, 3 — «часть» 13, а 6 — «части» 13.