Целые числа () позволяют выразить результат 3 – 4 = -1, рациональные () — (3/4) = 0,75, вещественные () — √2, комплексные () — √-4.
* * *
Точные измерения возможны только в математических моделях. Что и как измеряют математики? В этой науке измерения всегда были тесно связаны с геометрией — разделом, который изучает свойства фигур и тел на плоскости и в пространстве. Интересно отметить, что истоки геометрии восходят к решению конкретных задач, связанных с измерениями.
В элементарной геометрии приводится общее описание объектов и фигур, носящее качественный характер. Если мы хотим получить более конкретное и точное описание, требуется применить количественный подход — и здесь необходимы измерения, а для выражения результатов измерений нужны цифры. Отрезки имеют длину, участки плоскости — площадь, тела в пространстве — объем.
В математических моделях результаты измерений непрерывны, и для того чтобы выразить их, множества рациональных чисел недостаточно — его нужно расширить и включить в него все числа, которые покрывают числовую прямую, то есть вещественные числа. В повседневной жизни мы часто измеряем длину. В математической модели при измерении длины мы откладываем рассматриваемый отрезок вдоль прямой линии и устанавливаем соответствие между точками прямой и обозначающими их вещественными числами.
При этом вещественные числа требуются для измерений даже в, казалось бы, простых случаях. Пифагорейцы, пытаясь найти ответ на вопрос, чему равна длина диагонали квадрата с длиной стороны, равной единице, обнаружили, что существуют несоизмеримые величины. По теореме Пифагора, искомая длина диагонали равна √2, однако результат этой операции нельзя выразить рациональным числом () — для этого потребуются иррациональные числа, и мы вынуждены будем пересечь границу множества .
Длина диагонали квадрата со стороной длиной 1 равна √2, так как по теореме Пифагора √(12 + 12) = √2.
Древние греки, использовавшие при расчетах только рациональные числа, столкнулись со следующей проблемой: как измерить длину диагонали квадрата, если не существует числа, выражающего результат измерения? Решение проблемы приводит к идее о соизмеримых и несоизмеримых величинах: первые можно выразить как величину, кратную или дробную исходной единице измерения, вторые, напротив, нельзя выразить с помощью дробей или пропорций, как в нашем примере с диагональю квадрата.
В книге V «Начал» Евклид (ок. 325 г. до н. э. — ок. 265 г. до н. э.) с помощью своей теории пропорций в приложении к соизмеримым и несоизмеримым величинам решает эту задачу и устанавливает правила работы со всеми видами величин, как соизмеримыми, так и несоизмеримыми.
Слово «измерение» происходит от латинского metiri и, согласно Толковому словарю русского языка, означает «определение величины чего-либо какой-либо мерой». Это слово имеет и другие значения, в частности «протяженность измеряемой величины в каком-либо направлении». Единица измерения называется мерой. Например, пинту можно назвать мерой объема, причем ее величина в разных странах отличается; кроме того, существуют разные пинты для жидких и сыпучих объектов.
Измерение предполагает абстрагирование, при котором из всех характеристик объекта выделяется одна, которую мы хотим оценить количественно, иными словами, поставить ей в соответствие некоторое число. Если мы хотим поставить книгу на полку, интерес будут представлять ее длина или ширина, но если мы хотим придавить этой книгой листья растений для гербария, то прежде всего обратим внимание на ее вес или толщину.
В процессе измерений становится понятен смысл термина «величина». Хотя первое его значение, приведенное в толковом словаре, это «размер, объем, протяжение вещи», нас интересует другое определение — «все, что можно измерить и исчислить (в математике, физике)». Именно эта формулировка ближе всего к теме нашего обсуждения. Еще более понятно определение величины, данное Международным бюро мер и весов, согласно которому величина — это «свойство явления, тела или вещества, которое может быть выражено количественно в виде числа с указанием отличительного признака как основы для сравнения».
Процесс измерения представляет собой сравнение неизвестной величины, которую мы хотим определить, и известной нам величины, которую мы выбрали в качестве единицы измерения. В процессе измерения мы определяем соотношение размера объекта и конкретной единицы измерения.