Выбрать главу

Ещё сильнее изменился бы вес тела, если бы оно перенеслось с Земли на другую планету. Так, на Луне человек весил бы немногим более десяти килограммов: Луна менее массивна, чем Земля, и поэтому её притяжение слабее.

Выходит, вес — величина не такая уж определённая. В зависимости от условий она может изменяться, а иногда и вовсе исчезать.

Рис. 26. По мере удаления от центра Земли сила тяжести падает пропорционально квадрату расстояния.

А нет ли другой величины, которая действительно не зависела бы от места и была бы вполне определённой для каждого тела? Такой величиной является масса.

Масса тела — это количество вещества в нём. Иногда массу называют также мерой инерции (инерция — свойство тел сохранять состояние покоя или прямолинейного равномерного движения). Чем массивнее тело, тем большей инерцией оно обладает. Так, железнодорожный вагон труднее сдвинуть с места или затормозить, чем лёгкую повозку.

Масса, присущая какому-либо телу, не зависит от его расположения. И на полюсе и на экваторе масса тела неизменна. Не изменится она, даже если тело попадёт на Другую планету. Между массой тела и его весом существует прямая связь. Мы уже знаем, что тело притягивается Землёй тем сильнее, чем больше его масса. Значит, в одном и том же месте тело с большей массой будет обладать большим весом.

Ньютон установил, что вес тела равен произведению его массы на ускорение силы тяжести. Что это за ускорение?

Вот с высоты падает камень. Под действием силы тяжести скорость его падения всё время растёт — камень движется с ускорением. Допустим, что дело происходит в пустоте и воздух не мешает падению. Тогда независимо от своих размеров и веса камень падает с определённым неизменным ускорением, которое приблизительно равно 9,8 м/сек2 (это означает, что каждую секунду скорость падающего камня увеличивается на 9,8 м/сек). Такой ежесекундный прирост скорости падения и называют ускорением силы тяжести.

Чем больше притяжение Земли, тем выше это ускорение. На полюсах оно наиболее велико (9,83 м/сек2); на экваторе — несколько меньше (9,78 м/сек2). Во сколько раз меняется ускорение силы тяжести при переходе из одного места в другое, во столько же раз меняется и вес тел.

Вполне естественно поэтому, что учёные задумались: «как же быть с эталоном единицы веса?». Ведь если в Севре вес эталона в точности равен килограмму, то в Москве он будет несколько иным. Масса же эталона останется неизменной. А если это так, то не вернее ли считать эталон килограмма эталоном единицы массы, а не веса?

Такое решение и было принято III Международной конференцией по мерам и весам, состоявшейся в 1901 году. С тех пор эталон килограмма перестал быть эталоном единицы веса.

Поскольку тела с одинаковой массой в одном и том же месте имеют равные веса, массу измеряют путём взвешивания. И когда мы говорим «батон весом в одни килограмм», то невольно допускаем неточность — правильнее было бы сказать «массой в один килограмм».

Кстати, ещё немного о весе.

ЧТО ТЯЖЕЛЕЕ — КИЛОГРАММ СВИНЦА ИЛИ КИЛОГРАММ ПУХА?

Рис. 27. В воде тело становится легче.

Вы, вероятно, не раз слышали этот каверзный вопрос-шутку. Кое-кто, не подумав, отвечает: «килограмм свинца тяжелее…».

Такой ответ вызывает обычно взрыв смеха. А между тем дело здесь обстоит не так просто. Сейчас вы убедитесь, что килограмм свинца и впрямь может быть тяжелее, чем килограмм пуха.

Нетрудно заметить, что в воде тела становятся легче. Взвесьте какой-нибудь предмет на пружинных весах (рис. 27, а). Затем опустите его в воду. Как видите, стрелка весов указывает теперь меньшее значение (рис. 27, б).

Впервые такое явление обнаружил и объяснил ещё древнегреческий учёный Архимед. Закон, носящий его имя, гласит: «Всякое тело при погружении в жидкость теряет в своём весе столько, сколько весит вытесненная им жидкость».

Если тело вытесняет сравнительно немного воды, то и потеря его веса невелика. Таковы камни, куски металла и т. п. Все они под действием притяжения Земли опускаются на дно — тонут.

Если же вытесненная телом вода весит больше его самого, то такое тело становится как бы невесомым. Оно уже не тонет, а наоборот, всплывает. Примером подобных тел служит пробка.