Выбрать главу

Если бы в ящике находилось 100 карандашей с разными номерами, то вероятность вынуть определённый карандаш с заранее загаданным номером равнялась бы 1/100, если бы 1000 карандашей, то 1/1000 и т. д.

Если вероятность какого-то события равна, положим, 1/10, то это значит, что один шанс (шанс — вероятность, возможность) из десяти за то, что это событие случится.

Попробуем решить одну интересную задачу. Представьте, что в закрытом ящике находится 10 карандашей красного, синего и зелёного цвета. Нам неизвестно, сколько из них окрашено в красный цвет, сколько в синий и сколько в зелёный. Как определить, сколько карандашей каждого цвета находится в ящике, если разрешается вынимать одновременно только один карандаш (так, чтобы внутри ящика всегда оставалось не менее девяти карандашей)?

Оказывается, решить эту задачу довольно просто. Если вынутый карандаш снова опускать обратно, запомнив его цвет, потом, перемешав карандаши, вынимать новый, и так проделать много раз, то окажется, что число вынутых карандашей каждого цвета будет пропорционально их числу в ящике. Так, если приблизительно 1/2 вынутых карандашей имеет зелёный цвет, 1/5 красный и 3/10 синий, то в ящике находятся 5 зелёных карандашей, 2 красных и 3 синих. Ведь чем больше карандашей определённого цвета, тем больше вероятность вынуть карандаш, окрашенный именно в этот цвет.

Вот те краткие сведения из теории вероятностей, которые необходимы нам для того, чтобы разобраться в характере случайных погрешностей.

ПОЧЕМУ ГОВОРЯТ: «СЕМЬ РАЗ ОТМЕРЬ, ОДИН — ОТРЕЖЬ»?

На рис. 20 изображён несложный прибор, который поможет нам ответить на этот вопрос. Вы видите наклонную доску, укреплённую на подставке. В верхнюю, треугольную часть доски вбито большое число булавок. В нижней прямоугольной части имеется ряд узких продольных пазов, хорошо видимых на рисунке. У вершины «треугольника» закреплена обыкновенная воронка.

Если в воронку опустить шарик, то он, катясь по наклонной доске, будет встречать на пути булавки и при каждом столкновении отклоняться влево или вправо, пока не попадёт в один из пазов.

На первый взгляд кажется, что если опускать в воронку строго одинаковые шарики, то все они проделают один и тот же путь и очутятся в одном и том же пазу. На деле же так не получается.

Рис. 20. Прибор для изучения случайных погрешностей.

Рис. 21. Кривая Гаусса.

Существует множество явлений, влияющих на движение шарика. Достаточно, например, едва заметно толкнуть доску, чтобы его путь изменился. Причины, вызывающие изменение пути, носят случайный характер. Поэтому всякое отклонение от наиболее вероятного пути представляет собой случайную погрешность.

Посмотрим, что получится, если опускать в воронку один за другим большое количество шариков. Из многочисленных опытов выяснилось, что шарики размещаются в пазах по вполне определённому закону, образуя фигуру наподобие той, что изображена на рис. 21, а. Чем больше шариков, тем ближе очертания этой фигуры к кривой, показанной на рис. 21, б. Здесь по вертикали откладывается число шариков, а по горизонтали влево и вправо от середины кривой — отклонение от наиболее вероятного пути, то есть величина случайной погрешности. Таким образом, кривая рис. 21, 6 изображает распределение случайных погрешностей.

Впервые эта закономерность была установлена в прошлом веке выдающимся немецким математиком Гауссом, и поэтому она носит его имя. О чём говорит кривая Гаусса?

Из неё следует, во-первых, что малые погрешности встречаются чаще, чем большие, и, во-вторых, что при многократных измерениях одинаково часто наблюдаются случайные погрешности, которые равны по величине, но отклоняют результат измерения в разные стороны от действительной величины.

И на самом деле, поскольку погрешности носят здесь случайный характер, то вероятность отклонения как в сторону преувеличения, так и в сторону преуменьшения одинакова (в обоих случаях она равна 1/2).

Отсюда следует, что если сложить полученные значения измеряемой величины, то при достаточно большом числе измерений случайные погрешности, равные по величине, но действующие в разные стороны, уравновесят друг друга. Если теперь сумму полученных значений разделить на число измерений, то в результате получится величина, близкая к действительному значению. Эту величину называют средним арифметическим полученных значений.