[] –> error "Никаких head для пустых списков!"
(x:_) –> x
Как видите, синтаксис для выражений отбора довольно прост:
case expression of
pattern –> result
pattern –> result
...
Выражения проверяются на соответствие образцам. Сопоставление с образцом работает как обычно: используется первый образец, который подошёл. Если были опробованы все образцы и ни один не подошёл, генерируется ошибка времени выполнения.
Сопоставление с образцом по параметрам функции может быть сделано только при объявлении функции; выражения отбора могут использоваться практически везде. Например:
describeList :: [a] –> String
describeList xs = "Список " ++
case xs of
[] –> "пуст."
[x] –> "одноэлементный."
xs –> "длинный."
Они удобны для сопоставления с каким-нибудь образцом в середине выражения. Поскольку сопоставление с образцом при объявлении функции – это всего лишь упрощённая запись выражений отбора, мы могли бы определить функцию таким образом:
describeList :: [a] –> String
describeList xs = "Список " ++ what xs
where
what [] = "пуст."
what [x] = "одноэлементный."
what xs = "длинный."
4
Рекурсия
Привет, рекурсия!
В предыдущей главе мы кратко затронули рекурсию. Теперь мы изучим её более подробно, узнаем, почему она так важна для языка Haskell и как мы можем создавать лаконичные и элегантные решения, думая рекурсивно.
Если вы всё ещё не знаете, что такое рекурсия, прочтите это предложение ещё раз. Шучу!.. На самом деле рекурсия – это способ определять функции таким образом, что функция применяется в собственном определении. Стратегия решения при написании рекурсивно определяемых функций заключается в разбиении задачи на более мелкие подзадачи того же вида и в попытке их решения путём разбиения при необходимости на ещё более мелкие. Рано или поздно мы достигаем базовый случай (или базовые случаи) задачи, разбить который на подзадачи не удаётся и который требует написания явного (нерекурсивного) решения.
Многие понятия в математике даются рекурсивно. Например, последовательность чисел Фибоначчи. Мы определяем первые два числа Фибоначчи не рекурсивно. Допустим, F(0) = 0 и F(1) = 1; это означает, что нулевое и первое число из ряда Фибоначчи – это ноль и единица. Затем мы определим, что для любого натурального числа число Фибоначчи представляет собой сумму двух предыдущих чисел Фибоначчи. Таким образом, F(n) = F(n – 1) + F(n – 2). Получается, что F(3) – это F(2) + F(1), что в свою очередь даёт (F(1) + F(0)) + F(1). Так как мы достигли чисел Фибоначчи, заданных не рекурсивно, то можем точно сказать, что F(3) равно двум.
Рекурсия исключительно важна для языка Haskell, потому что, в отличие от императивных языков, вы выполняете вычисления в Haskell, описывая некоторое понятие, а не указывая, как его получить. Вот почему в этом языке нет циклов типа while
и for
– вместо этого мы зачастую должны использовать рекурсию, чтобы описать, что представляет собой та или иная сущность.
Максимум удобства
Функция maximum
принимает список упорядочиваемых элементов (то есть экземпляров класса Ord
) и возвращает максимальный элемент. Подумайте, как бы вы реализовали эту функцию в императивном стиле. Вероятно, завели бы переменную для хранения текущего значения максимального элемента – и затем в цикле проверяли бы элементы списка. Если элемент больше, чем текущее максимальное значение, вы бы замещали его новым значением. То, что осталось в переменной после завершения цикла, – и есть максимальный элемент. Ух!.. Довольно много слов потребовалось, чтобы описать такой простой алгоритм!
Ну а теперь посмотрим, как можно сформулировать этот алгоритм рекурсивно. Для начала мы бы определили базовые случаи. В пустом списке невозможно найти максимальный элемент. Если список состоит из одного элемента, то максимум равен этому элементу. Затем мы бы сказали, что максимум списка из более чем двух элементов – это большее из двух чисел: первого элемента («головы») или максимального элемента оставшейся части списка («хвоста»). Теперь запишем это на языке Haskell.
maximum' :: (Ord a) => [a] –> a