Выбрать главу

Один из пульсаров оказался расположенным в центре старой знакомой – Крабовидной туманности. Частота его пульсаций достигает 30 импульсов в секунду. Очевидно, что вращаться вокруг своей оси со скоростью 30 об/с, как это делает пульсар Крабовидной туманности, и не разлететься при этом на куски под действием сил инерции может только очень малое по своим размерам тело. Различные оценки привели к одним и тем же результатам: размеры пульсаров очень скромны, гораздо меньше размеров даже небольших планет вроде Земли – порядка 10 км.

В итоге мало-помалу были собраны исчерпывающие доказательства того, что пульсары действительно представляют собой теоретически предсказанные тремя десятилетиями ранее нейтронные звезды – звезды, находящиеся в последней стадии своей эволюции.

По современным представлениям, нейтронная звезда покрыта твердой, жесткой кристаллической корой с толщиной порядка одного километра. Так велика сила тяготения на этой звезде, что самая крупная гора на ее поверхности не смогла бы подняться выше 2,5 см. Под корой в недрах звезды находится сверхтекучая «нейтронная жидкость». Чудовищные условия нейтронной звезды приводят к тому, что все пустоты в атомах «выжимаются»: нейтронная звезда становится как бы одним цельным атомным ядром фантастических размеров. Плотность нейтронных звезд, как мы уже рассказывали, неслыханно велика: она заключается в пределах от 1012 до 1015 г/см3. Общая энергия излучения такого пульсара, как например, пульсар Крабовидной туманности, в тысячи раз превосходит энергию, излучаемую Солнцем.

Продолжительные наблюдения позволили обнаружить, что вращение некоторых пульсаров едва заметно замедляется. Это легко объяснимо: кинетическая энергия вращения нейтронной звезды переходит в излучение, и пульсар постепенно «замирает».

Помимо общего незначительного замедления вращения, у отдельных пульсаров наблюдаются непредвиденные скачкообразные увеличения скорости вращения. Они находятся на пределе чувствительности современной аппаратуры, составляя не более десятимиллионной доли секунды между соседними импульсами. Эти скачки в скорости вращения пульсаров связывают с перестройкой структуры их коры, можно сказать, со своего рода «звездотрясениями».

К середине 80-х годов радиоастрономы занесли в каталоги свыше четырехсот состарившихся звезд – пульсаров.

Третий теоретически возможный вариант звездной «кончины» представляет собой гравитационное сжатие звезд с массой больше двух масс Солнца. В соответствии с выводами теории относительности, вокруг них в результате гравитационного сжатия возникает настолько сильное искривление пространства, что электромагнитное излучение вообще не в силах вырваться за пределы этого объекта. Звезды, претерпевающие такое сжатие, становятся «невидимками».

Некоторые физики склонны образно называть возникающее при этом явление «черной дырой» в пространстве. Благодаря своему чудовищному гравитационному полю «черная дыра» не только ничего не излучает, но даже захватывает и поглощает всякое проходящее мимо излучение. Физические проблемы, связанные с последующей судьбой таких звезд, являются одними из наиболее интригующих в современной астрофизике.

Вернемся вновь к диаграмме Герцшпрунга-Рессела и попробуем в рамках изложенной теории наглядно представить себе все этапы эволюции звезды.

Температура поверхности звёзд. Эволюционный трек звезды на диаграмме Герцшпрунга–Рессела.

На рисунке с диаграммой Герцшпрунга-Рессела сплошной линией («лентой») со стрелками показаны перемещения звезды по мере ее «возмужания», или как говорят астрономы, ее эволюционный трек. Этот эволюционный трек начинается в правом нижнем углу диаграммы, когда только-только формирующаяся звезда еще холодна и светит слабо. Вскоре – за несколько десятков миллионов лет – звезда разогреется и достигнет главной последовательности. Затем на протяжении нескольких миллиардов лет она медленно поднимается вдоль главной последовательности снизу вверх, становясь все более яркой и горячей. Однако в какой-то момент времени, несмотря на продолжающееся увеличение общей светимости, температура поверхности звезды уже не увеличивается, а убывает. Характеристики звезды на диаграмме Герцшпрунга-Рессела начинают изменяться в сторону звезд-гигантов.

Проходит еще немного времени, и звезда красный гигант достигает поворотной точки своего существования: она начинает сбрасывать разреженную оболочку. Итог: светимость звезды резко падает, а температура поверхности быстро нарастает. Эволюционный трек звезды поворачивает на 180°. Дальнейшие события происходят достаточно быстро: звезда уходит из области красных гигантов, пересекает под прямым углом главную последовательность, спускается в область белых карликов и отправляется на «кладбище звезд».