При движении объекта-инициатора будет изменяться длина волны излучаемого сигнала, так как за время между созданием однофазных состояний сигнала объект-инициатор успеет сместиться, из-за чего и изменится расстояние между соседними однофазными состояниями сигнала. В этом случае изменяется сам излучаемый сигнал. Выражение для эффекта Доплера для случая совпадения направлений изучения сигнала и движения объекта-инициатора имеет вид: ν' = νc/(c-υ). Очевидно, что в этом случае частота принимаемого сигнала может стать бесконечной при движении объекта-инициатора со скоростью равной по направлению и значению скорости излучения сигнала. Правда, тогда Наблюдателю будет явно не до определения частоты сигнала, из-за столкновения с его объектом-инициатором.
В случае, когда сигнал порождается самим объектом, частота, скорость излучения и длина волны сигнала будет определяться внутренними процессами самого объекта-источника. В силу этого, движение источника не будет оказывать влияния на частоту, скорость излучения и длину волны сигнала, если, конечно, движение объекта не будет приводить к изменениям механизма реализации его внутренних процессов. От движения объекта-источника будет зависеть начальная скорость распространения сигнала, в силу обычного векторного сложения скоростей. В отсутствии внешнего воздействия, начальная скорость распространения сигнала, будет и его пространственной скоростью на всем пути до Наблюдателя. Таким образом движение объекта-источника приводит к изменению пространственной скорости сигнала, в результате чего изменится временной интервал между достижениями Наблюдателя однофазными состояниями сигнала. Это и есть изменение частоты принимаемого сигнала, по сравнению с частотой его излучения источником. Для данного случая выражение эффекта Доплера при совпадении направлений скоростей движения источника и сигнала имеет вид: ν' = ν (c)/c+υ. Очевидно, что в этом случае также исключено получение бесконечной частоты принимаемого сигнала.
Так, что определение величины эффекта Доплера для движущегося источника явно позволит сделать вывод о том, зависит ли распространение сигнала от движения его источника, а также является ли движущийся объект непосредственным источником сигнала, или источник сигнала — процесс взаимодействия такого объекта и окружающей его среды.
И еще одна примечательная особенность выражения, полученного А. Эйнштейном для эффекта Доплера:
.
Совсем не трудно заметить, что при движении Наблюдателя перпендикулярно нормали волны, испускаемой бесконечно удаленным источником, то есть когда cos ϕ = 0, частота принимаемого сигнала не будет равна частоте излучаемого так как ν' = ν/(1‑2υ/c2)½. Однако, в данном случае частота меняться не должна, что и подтверждает классическое выражение ν' = ν (с‑υ cosϕ)/с.
А. Эйнштейн описывает в своей статье и аберрацию света. Примечательно, что именно годовая звездная аберрация стала основной причиной поисков «светоносного эфира», и вместе с отрицательными результатами этих поисков, привела к необходимости создания специальной теории относительности. Вот объяснение А. Эйнштейна:
<*****
Если мы назовем угол между нормалью волны (направлением луча) в движущейся системе и соединительной линией «источник-наблюдатель» ϕ' , уравнение для ϕ' примет вид
Это уравнение выражает закон аберрации в наиболее общей форме. Если ϕ= 1/2π, уравнение становится просто cos ϕ' =-υ/c.