В конце 1949 г. группа Г. Сиборга сумела изготовить америциевую мишень и облучить ее α-частицами. Ядерная реакция протекала так, как предварительно рассчитали теоретики: 241Am(α, 2n)24397. Для нового элемента предложили название берклий (символ Bk) в честь города Беркли и вследствие химической аналогии элемента № 97 с редкоземельным элементом тербием (вспомните деревушку Иттербю, давшую жизнь названиям нескольких редких земель). Среди девяти известных ныне изотопов самым долгоживущим является 247Bk (период полураспада 1380 лет), синтезированный в 1956 г. Два года спустя элемент накопили в весовых количествах, а в 1971 г. ученые выделили металлический берклий. Сколь трудно осуществить накопление берклия, говорят следующие цифры: 8 г 239Pu в течение 5 лет облучались нейтронами в ядер-ном реакторе, а итогом было лишь несколько микрограммов элемента № 97. Чем дальше пробирались исследователи в трансурановую область, тем с меньшими количествами новых элементов им приходилось иметь дело.
КАЛИФОРНИЙ
После берклия элемент № 98 Г. Сиборг и его сотрудники синтезировали очень быстро. В январе–феврале 1950 г. они провели рассчитанную ядерную реакцию: 242Cm(α, n)24598, назвав новый элемент в честь штата Калифорния и Калифорнийского университета, а еще и потому, что элемент № 98 являлся аналогом редкоземельного диспрозия (труднодоступного): в прошлом веке было так же трудно добраться до Калифорнии, как выделить диспрозий из смеси редких земель. Из четырнадцати известных ныне изотопов калифорний-245 был не самым долгоживущим. Наибольший период полураспада (900 лет) имеет калифорний-251, синтезированный в 1954 г. Весовые количества этого элемента ученые выделили в 1958 г., а металлический калифорний стал реальностью в 1971 г.
ЭЙНШТЕЙНИЙ И ФЕРМИЙ
Синтезировав калифорний, американские ученые (да и их коллеги в других странах) серьезно задумались, как же двигаться дальше. Реально ли в обозримом будущем ставить задачу прорыва в еще более далекую область неизвестных трансурановых элементов?
В самом деле, не было видно реальных путей накопления достаточных для изготовления мишеней количеств берклия и калифорния, чтобы, обстреляв их α-частицами, синтезировать девяносто девятый и сотый элементы. Препятствием этому были слишком малые периоды полураспада берклия и калифорния, измерявшиеся часами и минутами (долгоживущих изотопов ученые еще не знали). Предполагался лишь один более или менее реальный путь: длительное облучение плутония интенсивным источником нейтронов, но ждать результатов пришлось бы долгие годы.
Конечно, было бы желательно получить такой мощный поток нейтронов, который сразу бы помог решить проблему. Так уран либо плутоний, захватив большое число нейтронов за короткий промежуток времени, превратились бы в очень тяжелые изотопы, например:
или
Давно было известно, что ядра избавляются от избытка нейтронов в результате превращения их в протоны, т. е. путем β-распада. Эти цепочки последовательных β-превращений могут оказаться настолько длинными, что дотянутся до образования изотопов 99-го и 100-го элементов.
Расчеты же показывали, что мощности нейтронных потоков в ядерных реакторах являются слишком слабыми, чтобы осуществить идею на практике. Кроме того, теоретики видели беду и в предполагаемых малых продолжительностях жизни изотопов элементов № 99 и № 100.
1 ноября 1952 г. американцы произвели взрыв термоядерного устройства на атолле Эниветок в Тихом океане. Несколько сотен килограммов почвы на месте взрыва (получившей кодовое название «дорогостоящая грязь») были собраны со всеми предосторожностями и отправлены в США. Группы исследователей во главе с Г. Сиборгом и А. Гиорсо произвели тщательное изучение этого радиоактивного пепла. В нем было обнаружено много различных радиоактивных изотопов трансурановых элементов, и в том числе два изотопа, которые могли быть не чем иным, как изотопами 99-го или 100-го элементов.
В ходе термоядерного взрыва мощность нейтронных потоков оказалась гораздо выше, чем предполагалось. Благодаря этому и реализовались процессы захвата нейтронов ураном, представленные выше. Изотопы 253U и 255U, испустив соответственно одну за другой 7 и 8 β-частиц, превратились в изотопы элементов девяносто девятого (25399) и сотого (255100). Их периоды полураспада оказались малыми, но вполне приемлемыми, однако, для исследований (20 дней и 22 ч).