Выбрать главу

Водород является удивительным элементом в том смысле, что его изотопы различаются по ряду физических и химических свойств. В свое время подобное различие давало кое-кому из ученых повод рассматривать изотопы водорода в качестве самостоятельных элементов и искать для них специальных мест в периодической системе. Поэтому история открытия изотопов водорода представляет особый интерес, являясь как бы своеобразным продолжением истории открытия элемента.

Обнаружить изотопы водорода ученые безуспешно пытались в 20-х годах нашего столетия, и постепенно сложилось мнение, что водород изотопов не имеет. В 1931 г. было сделано предположение, что все же в водороде присутствует тяжелый изотоп с массовым числом 2. Так как он должен был превосходить своего легкого собрата по массе в два раза, то ученые попытались выделить тяжелый водород физическими методами. В 1932 г. американцы Г. Юри, Ф. Брикведде и Г. Мэрфи проводили испарение жидкого водорода и в остатке спектроскопическим методом нашли искомый тяжелый изотоп. В атмосфере же он был обнаружен только в 1941 г. Название «дейтерий» происходит от греческого слова дейтерос, означающего «другой, второй». Следующий изотоп с массовым числом 3 — тритий (от греческого слова тритос — «третий») — является радиоактивным и был открыт в 1934 г. в Англии М. Олифантом, П. Гартеком и Э. Резерфордом. За основным изотопом водорода закрепилось название «протий». Это единственный случай, когда изотопы одного и того же элемента имеют различные названия и символы (Н, D и Т). На долю протия приходится 99,99%, остальное — дейтерий; трития же ничтожные следы.

АЗОТ

Хотя связанный воздух (углекислый газ) и горючий воздух (водород) впоследствии были обнаружены в составе земной атмосферы, их открытия фактически не были связаны с исследованиями атмосферного воздуха. Последний же продолжали рассматривать как «классический» воздух, и пока никому не приходило в голову, что он является смесью газов. Но именно его исследование позволило пневматической химии достичь наибольших успехов.

Изучение атмосферы подарило человечеству азот. Хотя его открытие связывается с именем определенного ученого и с конкретной датой, следовало бы заметить, что такая простота и ясность обманчивы. Четко выделить линию истории обнаружения азота из общего потока работ по пневматической химии нелегко; можно представить лишь более или менее логическую последовательность событий.

С соединениями азота люди были знакомы с давних времен, например с селитрой и азотной кислотой, и много раз наблюдали выделение бурых паров диоксида азота. Очевидно, не было возможности открыть азот путем разложения его неорганических соединений. Не имея вкуса, цвета и запаха, будучи химически малоактивным, он остался бы незамеченным.

И потому вопрос о том, с чего начать описание истории открытия азота, кажется нам нелегким, а решение его может быть субъективным. Можно начать с 1767 г., когда Г. Кавендиш и одновременно с ним другой, не менее выдающийся английский физик, химик и философ Дж. Пристли стали изучать, как действуют электрические разряды на различные газы. Таких газов в то время было немного: обычный воздух, связанный воздух, горючий воздух. Эти эксперименты не дали определенных результатов, хотя позже было показано, что в процессе электрического разряда во влажном воздухе образуется азотная кислота. Данный факт впоследствии сослужил добрую службу при выяснении газового состава земной атмосферы.

В 1777 г. в частном письме к Дж. Пристли Г. Кавендиш сообщил, что ему удалось получить новую разновидность воздуха, названного удушливым или мефитическим. Г. Кавендиш пропускал обычный воздух над раскаленным углем, повторяя этот процесс многократно. В итоге получался связанный воздух, который поглощался щелочью. Остаток же обычного воздуха и представлял собой мефитический. Г. Кавендиш не стал его исследовать детально, а сообщил Дж. Пристли лишь факт своего наблюдения. К изучению мефического воздуха Г. Кавендиш вернулся позже, многого здесь достиг, но авторство открытия принадлежало уже другому человеку.

Когда послание Г. Кавендиша попало к Дж. Пристли, тот занимался важными экспериментами и невнимательно отнесся к сообщенному ему факту. Дж. Пристли сжигал в определенном объеме воздуха разные горючие тела и прокаливал металлы; при этом образовавшийся связанный воздух удалялся с помощью известковой воды. Самое главное, что заметил Дж. Пристли, состояло в заметном уменьшении объема воздуха. Современный читатель подскажет: в результате обжига металлов или сгорания тел связывался присутствовавший в объеме кислород и оставался азот. Но Дж. Пристли понятия еще не имел о существовании такого газа, как кислород (хотя спустя два года стал одним из авторов его открытия), и для объяснения своего наблюдения обратился к флогистону. Дж. Пристли считал, что результат обжига металлов заключается исключительно в действии флогистона. Оставшийся воздух насыщен флогистоном, и, следовательно, его можно назвать флогистированным, он не поддерживает дыхания и горения.