Однако статья Ж. Урбэна появилась в печати на несколько месяцев раньше, и поэтому его считают автором открытия лютеция. Правда, в немецкой научной литературе название кассиопей и символ Cp употреблялись долгое время. Да и вообще многие ученые считали результаты К. Ауэра фон Вельсбаха более надежными и достоверными. После церия это был второй случай в истории РЗЭ, когда приоритет открытия нового элемента оспаривали двое ученых из разных стран. Впрочем, к ним с полным основанием мог добавиться и третий — американский химик Ч. Джеймс. Он самостоятельно установил, что «иттербий» есть смесь, но описал свои опыты после того, как вести о работах Ж. Урбэна и К. Ауэра фон Вельсбаха достигли берегов Америки.
Лютеций оказался последним из РЗЭ, обнаруженным в природе и замыкающим редкоземельный ряд. Ж. Урбэн так не считал. В 1911 г. он возвестил об открытии нового элемента — кельтия, полагая, что в периодической системе он должен стоять после лютеция. Как выяснилось впоследствии, кельтий был ошибкой эксперимента. Ж. Урбэн неправильно расшифровал его спектр: содержавшиеся в нем новые линии в действительности соответствовали спектральным линиям известных элементов.
УРОКИ ИСТОРИИ РЗЭ
Она весьма поучительна — эта история. Ее писали десятки самоотверженных и трудолюбивых химиков нескольких поколений, ибо ищущим легкой славы и удачи нечего было делать в химии редких земель. Утомительное однообразие бесконечных операций разделения элементов-близнецов требовало громадного терпения.
История РЗЭ — это единый целостный процесс, из которого нельзя выбросить ни одного звена. Открытие одного элемента исподволь подготавливало открытие другого. Даже бесчисленные ошибки в конечном счете работали на пользу дела. На них учились, ученые совершенствовали методы исследования, проверяли результаты свои и своих коллег. Ни в одном другом случае повторное обнаружение нового элемента не имело такой ценности, как в истории РЗЭ. Истина постепенно извлекалась из моря ошибок.
Течение истории РЗЭ в огромной степени зависело от обнаружения новых редкоземельных минералов. Мы уже рассказывали, какую роль сыграли открытия месторождений самарскита и монацита: после этого ученые перестали испытывать нужду в образцах для исследований. Подобной зависимости вы не найдете в истории других элементов. И наконец, ничто не доставляло таких трудностей периодической системе, как проблема размещения в ней РЗЭ. Ведь ученые не знали, сколько же РЗЭ существует в действительности, в чем заключается причина их удивительного химического сходства. Это стало ясным лишь после того, как датский ученый Н. Бор разработал в 1921 г. свою теорию периодической системы. Физику удалось сделать то, над чем долгое время бились химики. Но и в наши дни продолжаются споры о том, как наилучшим образом разместить РЗЭ в менделеевской таблице.
ГЛАВА VIII.
ГЕЛИЙ И ДРУГИЕ ИНЕРТНЫЕ ГАЗЫ
Плеяду инертных газов (теперь их называют инертными элементами) составляют шесть газообразных элементов: гелий, неон, аргон, криптон, ксенон и радон. Все они чрезвычайно мало распространены в природе. Долгое время после их обнаружения полагали, что они вообще не могут образовывать химические соединения, откуда, собственно, и происходит название «инертные» или «благородные» (В. Рамзай предлагал для них и другое название — редкие газы, но оно не закрепилось). Именно в силу своей редкостности и инертности они были открыты сравнительно поздно (в самом конце XIX в.), когда достаточно высокого уровня достигла техника физических исследований, а именно методы спектрального анализа и способы получения газов в жидком состоянии. Характерно, что все инертные газы удалось выделить в свободном состоянии (в котором они только и встречаются в природе), и притом за очень короткий срок — с 1894 по 1900 г. Решающая роль в открытии аргона, гелия, неона, криптона и ксенона принадлежит фактически одному ученому — В. Рамзаю, выдающемуся английскому физико-химику. За это научное достижение ему была присуждена Нобелевская премия по химии (1904).
Из общего русла исследований выпадают те, которые связаны с историей открытия гелия и радона. Радон был найден в результате изучения явления радиоактивности и, следовательно, благодаря применению радиометрического метода. Поэтому о нем мы расскажем в главе XI, посвященной истории открытия радиоактивных элементов. Проблема обнаружения гелия занимает исключительное место во всей истории химических элементов. Дело в том, что сначала, в 1868 г., в спектре солнечных протуберанцев обнаружили линию, которая не соответствовала ни одному из элементов, существующих на Земле. Этот факт и позволял многим ученым утверждать, что на Солнце присутствует неизвестный элемент, названный гелием. В земных же объектах гелий был найден 27 лет спустя и впервые выделен в материальной форме.