Чем выше концентрация электронов в ионосфере и чем больше длина волн, используемых для связи, тем труднее этим колебаниям пробиться сквозь слой ионосферы.
Если электромагнитные колебания с длинами волн более 50 м посылаются с Земли, то, достигнув ионосферы, они отражаются от нее и возвращаются к поверхности Земли. Последующее отражение радиоволн от поверхности Земли вызывает многократное повторение этого процесса, в результате чего радиоволны могут достигнуть пункта, находящегося в диаметрально противоположной по отношению к передающей радиостанции точке земного шара. Но именно это свойство ионосферы, позволяющее установить радиосвязь между отдаленными пунктами земной поверхности, затрудняет радиосвязь с искусственными спутниками Земли и космическими ракетами.
Для отражения длинных волн, посылаемых с Земли, достаточно той концентрации электронов, которая обнаруживается на высоте 60–90 км, в так называемом ионосферном слое D. Средние волны отражаются слоем Е, расположенным на высоте 100–130 км, где электронная концентрация много выше. Еще более короткие волны, беспрепятственно проходящие слои D и Е, отражаются слоем F с максимальной концентрацией электронов на высоте 250–400 км. Радиоволны длиной около 40 м уже могут проходить, не отражаясь, за пределы ионосферы, однако при этом они ослабляются. Чем ближе направление радиолуча к вертикальному, тем меньше ослабление проходящих сквозь ионосферу волн. Волны короче 20 м проходят сквозь атмосферу почти беспрепятственно.
С точки зрения эффективного использования электроэнергии желательно применять направленное излучение электромагнитных волн как на искусственном небесном теле, так и на Земле. Как известно, геометрические размеры антенных систем при этом должны быть соизмеримыми с длиной волны используемого электромагнитного излучения. Поэтому с целью уменьшения размеров антенн желательно использовать ультракороткие радиоволны. Однако слишком короткие волны (длиной менее 3 см) для связи с космическими кораблями использовать нельзя, так как они поглощаются нижними слоями атмосферы, водяными парами, рассеиваются ионосферой. Особенно сильно поглощаются водяными парами и рассеиваются ионосферой радиоволны длиной менее 2 см. Однако поглощение в парах воды и кислороде воздуха, которое объясняется возникновением резонансных явлений, неодинаково в пределах диапазона миллиметровых волн. Так, в диапазоне волн 20— 1 мм имеются две полосы поглощения радиоволн в парах воды с максимумами поглощения на волнах 1,8 и 14 мм. В том же диапазоне кислород воздуха имеет две полосы поглощения с максимумами на волнах 2,6 и 5 мм. Так как полосы максимального поглощения довольно узки, то в диапазоне миллиметровых волн могут быть выделены широкие области, в которых потери из-за поглощения малы.
На советских спутниках и космических ракетах использовались радиоволны с длинами волн от 15 до 1,5 м. Недостатком космической связи с использованием волн этого диапазона является то, что они лежат в диапазоне собственного радиоизлучения небесных тел и газовых туманностей.
К числу первостепенных проблем, возникающих при конструировании бортовой радиоаппаратуры, относится проблема источников электрической энергии на спутниках и космических станциях. На межпланетной автоматической станции использовались отдельные блоки химических элементов тока, обеспечивающие питание кратковременно действующей аппаратуры, а также централизованный блок буферной химической батареи. В этих источниках тока электрическая энергия вырабатывалась непосредственно за счет химического взаимодействия веществ, входящих в состав их электродов. Пополнение израсходованной энергии буферной батареи осуществлялось за счет солнечных батарей — фотоэлектрических преобразователей энергии.
В качестве фотоэлектрических генераторов, преобразующих энергию солнечных лучей непосредственно в электрическую, в настоящее время широко применяются кремниевые элементы, обладающие значительно большей эффективностью по сравнению с фотоэлектрическими генераторами других типов. У лучших образцов кремниевых элементов в электрическую энергию преобразуется до 11 % попадающей в элемент энергии солнечных лучей. При использовании солнечной батареи для получения электрической энергии необходимо учитывать, что энергия солнечного излучения имеет относительно малую плотность; поэтому для получения достаточной мощности требуется применять батареи с соответствующей площадью поверхности. При этом необходимо иметь в виду, что в безоблачный день поток солнечного света имеет на освещаемой поверхности мощность около 1 квт/м2 при условии, что солнечные лучи падают перпендикулярно освещаемой поверхности. При подсчете мощности, вырабатываемой фотоэлектрическим генератором, необходимо учитывать и то, что не вся энергия солнечных лучей поглощается элементом: часть ее отражается от поверхности кремниевого преобразователя.