А что мы изменили? Всего-то чуть-чуть силу тяжести. На этом примере, мне кажется, особенно хорошо видна взаимосвязь всех оболочек нашей планеты, их нерасторжимое единство.
Но попробуем представить себе обратную картину. Земля имеет массу в два раза меньше, чем есть. Я предлагаю вам проделать этот фантастический экскурс самостоятельно. И только для начала подскажу: ускорение силы тяжести станет 0,73 от существующего. А дальше сами…
Примерно в XVII веке люди в полной мере осознали важность этого свойства — силы тяжести. Тогда и задумались, как же взвесить Землю, как узнать ее массу, чтобы потом подсчитать и силу тяжести на поверхности. Если бы плотность вещества не менялась с глубиной, задачку решить было бы несложно. Взвесил, предположим, один кубометр земли, а потом умножай полученный вес на объем. Размеры-то земного шарика были уже известны. Но в том-то и горе, что в глубине земные слои куда плотнее, чем на поверхности. Нужно было эту трудность как-то обойти.
Как открывали закон всемирного тяготения
Вы, конечно, знаете, что вес — это просто сила, с которой Земля притягивает к себе разные предметы. Одно и то же тело на Земле и на Луне весит по-разному, хотя масса его не меняется. Величина силы тяжести зависит от массы не только притягиваемого тела, но и притягивающего, а также от расстояния между их центрами. Вот только как зависит? От успеха решения этой задачи в XVII веке зависело буквально все развитие дальнейшей науки. Ученые это хорошо понимали и напрягали усилия, чтобы вывести закон, который связывал силу тяготения и массы тел.
В то время Исаак Ньютон упорно изучал движение Луны, задавая себе вопрос: «Что удерживает Луну от падения на Землю и какая сила движет ею по орбите вокруг Земли?» Эти вопросы тогда занимали не одного его. Едва ли не все ученое общество Лондона размышляло на ту же тему. Однажды астроном Галлей, друг и почитатель Ньютона, встретился в лондонском кафе с архитектором Реном. Оба сразу же заговорили о злободневных научных вопросах. К ним подошел Гук-наблюдатель и демонстратор опытов в Лондонском королевском обществе. Оказалось, что все трое немало времени и сил отдали доказательству того, что под действием силы тяжести, которая убывает пропорционально квадрату расстояний, движение небесных тел должно совершаться по кеплеровским эллиптическим орбитам, а не по кругам, как считалось раньше. Но доказательство ни у кого не получилось.
Следует заметить, что эта идея уже давно витала в воздухе. О ней говорили и даже писали. Оставалось ее только доказать математически. Жил в то время один малоизвестный сегодня итальянский натуралист по имени Джиованни Борелли. Занимаясь изучением движения спутников Юпитера, открытых Галилеем, он пришел к интересному заключению. «Движение небесных тел определяется взаимодействием двух сил, — говорил он. — Одной, направленной к центру вращения, и другой — от центра». Борелли рассуждал: предположим, что планета находится на таком расстоянии от Солнца и движется с такой скоростью, что стремление от центра меньше силы притяжения. Тогда планета будет приближаться к светилу по спирали, пока обе силы не уравновесятся. Предположим дальше, что по инерции, открытой Галилеем, планета проскочила нейтральную орбиту и приблизилась к Солнцу ближе положенного. Тогда сохранившаяся скорость движения заставит центробежную силу преодолеть притяжение и планета станет удаляться от светила.
Об этих рассуждениях Борелли знали многие. Но в них не было ни строчки неопровержимых математических доказательств. Итальянский ученый просто предполагал существование силы притяжения и из нее логически выводил необходимость обращения планет по орбитам.
Рен, самый богатый из всех троих джентльменов, сошедшихся в кафе, чисто в английском вкусе предложил на пари выплатить премию тому, кто первым решит задачу. Галлей и Гук согласились.
Прошло некоторое время, и Галлей как-то зашей к Ньютону по делам. Он рассказал ему о споре и о пари. Каково же было его удивление, когда его ученый друг с жаром заявил, что не только сам давно занимается тою же проблемой, но и почти имеет готовое решение.
Ньютон действительно давно рассуждал о причинах, удерживающих Луну на своей орбите. Искал силы, заставляющие наш спутник обращаться вокруг Земли. Упорно думал, пока ему не открылась вдруг простая истина. Да ведь для такого движения никакой дополнительной силы, кроме притяжения, и не нужно! Помните закон, гласящий, что ежели на тело не действует никакая посторонняя сила, то оно летит себе прямо с постоянной скоростью. Не так ли движется и Луна? Она летит себе прямолинейно в пространстве, а притяжение Земли ее все время заворачивает. И Луна падает, падает на Землю, но никак не может упасть…